首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >On the discriminatory power of adaptive feed-forward layered networks
【24h】

On the discriminatory power of adaptive feed-forward layered networks

机译:自适应前馈分层网络的鉴别能力

获取原文
获取原文并翻译 | 示例

摘要

This correspondence expands the available theoretical framework that establishes a link between discriminant analysis and adaptive feed-forward layered linear-output networks used as mean-square classifiers. This has the advantages of providing more theoretical justification for the use of these nets in pattern classification and gaining a better insight into their behavior and about their use. The authors prove that, under reasonable assumptions, minimizing the mean-square error at the network output is equivalent to minimizing the following: 1) the difference between the optimum value of a familiar discriminant criterion and the value of this criterion evaluated in the space spanned 2) the outputs of the final hidden layer, and 3) the difference between the values of the same discriminant criterion evaluated in desired-output and actual-output subspaces. The authors also illustrate, under specific constraints, how to solve the following problem: given a feature extraction criterion, how the target coding scheme can be selected such that this criterion is maximized at the output of the network final hidden layer. Other properties for these networks are explored.
机译:这种对应关系扩展了可用的理论框架,该框架在判别分析和用作均方分类器的自适应前馈分层线性输出网络之间建立了联系。这样做的优点是,可以为这些网络在模式分类中的使用提供更多的理论依据,并更好地了解其行为和使用情况。作者证明,在合理的假设下,将网络输出的均方误差最小化等于将以下各项最小化:1)熟悉的判别准则的最优值与该准则在跨越空间中评估的值之间的差异2)最终隐藏层的输出,以及3)在期望输出和实际输出子空间中评估的相同判别标准的值之间的差。作者还说明了在特定约束下如何解决以下问题:给定特征提取标准,如何选择目标编码方案,以使该标准在网络最终隐藏层的输出处最大化。探索了这些网络的其他属性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号