首页> 外文会议>Science of Artificial Neural Networks II >Link between adaptive feed-forward layered networks and discriminant analysis
【24h】

Link between adaptive feed-forward layered networks and discriminant analysis

机译:自适应前馈分层网络与判别分析之间的联系

获取原文
获取原文并翻译 | 示例

摘要

Abstract: The paper expands the available theoretical framework that establishes a link between an adaptive feedforward layered linear-output network used as a mean-square classifier and discriminant analysis. We prove that, under reasonable assumptions, minimizing the mean- square error at the network output is equivalent to minimizing the following: (1) the difference between the optimum value of a familiar discriminant criterion and the value of this criterion evaluated in the space spanned by the outputs of the final hidden layer, and (2) the difference between the values of the same discriminant criterion evaluated in desired-output and actual- output subspaces. We also illustrate, under specific constraints, how to solve the following problem: given a feature extraction criterion, how the target coding scheme can be selected such that this criterion is maximized at the output of the network final hidden layer.!7
机译:摘要:本文扩展了可用的理论框架,该框架在用作均方分类器的自适应前馈分层线性输出网络与判别分析之间建立了联系。我们证明,在合理的假设下,将网络输出的均方误差最小化等于将以下各项最小化:(1)熟悉的判别准则的最优值与该准则在跨越空间中评估的价值之间的差异(2)在期望输出和实际输出子空间中评估的相同判别标准的值之间的差。我们还说明了在特定约束下如何解决以下问题:给定一个特征提取准则,如何选择目标编码方案,以使该准则在网络最终隐藏层的输出处最大化。!7

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号