首页> 外文期刊>Neurocomputing >Solving local minima problem with large number of hidden nodes on two-layered feed-forward artificial neural networks
【24h】

Solving local minima problem with large number of hidden nodes on two-layered feed-forward artificial neural networks

机译:用两层前馈人工神经网络解决具有大量隐藏节点的局部极小问题

获取原文
获取原文并翻译 | 示例

摘要

The gradient descent algorithms like backpropagation (BP) or its variations on multi-layered feedforward networks are widely used in many applications. However, the most serious problem associated with the BP is local minima problem. Especially, an exceeding number of hidden nodes make the corresponding network deepen the local minima problem. We propose an algorithm which shows stable performance on training despite of the large number of hidden nodes. This algorithm is called separate learning algorithm in which hidden-to-output and input-to-hidden separately trained. Simulations on some benchmark problems have been performed to demonstrate the validity of the proposed method.
机译:梯度下降算法(例如反向传播(BP))或其在多层前馈网络上的变化在许多应用中得到了广泛使用。但是,与BP相关的最严重的问题是局部最小值问题。特别是,隐藏节点的数量过多使相应的网络加深了局部最小值问题。我们提出了一种算法,尽管隐藏节点数量众多,但该算法在训练中表现出稳定的性能。该算法称为单独学习算法,其中对隐藏到输出和输入到隐藏分别进行训练。对一些基准问题进行了仿真,以证明该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号