首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >On the behavior of artificial neural network classifiers in high-dimensional spaces
【24h】

On the behavior of artificial neural network classifiers in high-dimensional spaces

机译:高维空间中人工神经网络分类器的行为

获取原文
获取原文并翻译 | 示例

摘要

It is widely believed in the pattern recognition field that when a fixed number of training samples is used to design a classifier, the generalization error of the classifier tends to increase as the number of features gets larger. In this paper, we discuss the generalization error of the artificial neural network (ANN) classifiers in high-dimensional spaces, under a practical condition that the ratio of the training sample size to the dimensionality is small. Experimental results show that the generalization error of ANN classifiers seems much less sensitive to the feature size than 1-NN, Parzen and quadratic classifiers.
机译:在模式识别领域中,普遍认为,当使用固定数量的训练样本来设计分类器时,随着特征数量的增加,分类器的泛化误差趋于增加。在本文中,我们讨论了在训练样本大小与维数之比小的实际条件下,高维空间中的人工神经网络(ANN)分类器的泛化误差。实验结果表明,与1-NN,Parzen和二次分类器相比,ANN分类器的泛化误差对特征尺寸的敏感性似乎要低得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号