首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Estimating the intrinsic dimension of data with a fractal-based method
【24h】

Estimating the intrinsic dimension of data with a fractal-based method

机译:使用基于分形的方法估计数据的固有维

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the problem of estimating the intrinsic dimension of a data set is investigated. A fractal-based approach using the Grassberger-Procaccia algorithm is proposed. Since the Grassberger-Procaccia algorithm (1983) performs badly on sets of high dimensionality, an empirical procedure that improves the original algorithm has been developed. The procedure has been tested on data sets of known dimensionality and on time series of Santa Fe competition.
机译:在本文中,研究了估计数据集固有维数的问题。提出了一种使用Grassberger-Procaccia算法的基于分形的方法。由于Grassberger-Procaccia算法(1983)在高维集上表现不佳,因此开发了改进原始算法的经验方法。该程序已在已知维度的数据集和圣达菲比赛的时间序列上进行了测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号