首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >Practical Considerations on Nonparametric Methods for Estimating Intrinsic Dimensions of Nonlinear Data Structures
【24h】

Practical Considerations on Nonparametric Methods for Estimating Intrinsic Dimensions of Nonlinear Data Structures

机译:关于非线性数据结构内在尺寸的非参数方法的实践考虑因素

获取原文
获取原文并翻译 | 示例

摘要

This paper develops readily applicable methods for estimating the intrinsic dimension of multi-variate datasets. The proposed methods, which make use of theoretical properties of the empirical distribution functions of (pairwise or pointwise) distances, build on the existing concepts of (i) correlation dimensions and (ii) charting manifolds that are contrasted with (iii) a maximum likelihood technique and (iv) other recently proposed geometric methods including MiND and IDEA. This comparison relies on application studies involving simulated examples, a recorded dataset from a glucose processing facility, as well as several benchmark datasets available from the literature. The performance of the proposed techniques is generally in line with other dimension estimators, specifically noting that the correlation dimension variants perform favorably to the maximum likelihood method in terms of accuracy and computational efficiency.
机译:本文开发了估计多变体数据集的内在尺寸的易于适用的方法。所提出的方法,利用(成对或朝向)距离的经验分布函数的理论特性,构建在(i)相关尺寸的现有概念和与(iii)形成对比的概念的最大可能性技术和(iv)其他最近提出的几何方法,包括思想和想法。这种比较依赖于涉及模拟示例的应用研究,来自葡萄糖处理设施的记录数据集,以及从文献中获得的几个基准数据集。所提出的技术的性能通常符合其他尺寸估计器,具体地注意到相关尺寸变体在精度和计算效率方面的最大似然方法有利地执行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号