首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >An Experimental Study on Pedestrian Classification
【24h】

An Experimental Study on Pedestrian Classification

机译:行人分类的实验研究

获取原文
获取原文并翻译 | 示例

摘要

Detecting people in images is key for several important application domains in computer vision. This paper presents an in-depth experimental study on pedestrian classification; multiple feature-classifier combinations are examined with respect to their ROC performance and efficiency. We investigate global versus local and adaptive versus nonadaptive features, as exemplified by PCA coefficients, Haar wavelets, and local receptive fields (LRFs). In terms of classifiers, we consider the popular support vector machines (SVMs), feedforward neural networks, and k-nearest neighbor classifier. Experiments are performed on a large data set consisting of 4,000 pedestrian and more than 25,000 nonpedestrian (labeled) images captured in outdoor urban environments. Statistically meaningful results are obtained by analyzing performance variances caused by varying training and test sets. Furthermore, we investigate how classification performance and training sample size are correlated. Sample size is adjusted by increasing the number of manually labeled training data or by employing automatic bootstrapping or cascade techniques. Our experiments show that the novel combination of SVMs with LRF features performs best. A boosted cascade of Haar wavelets can, however, reach quite competitive results, at a fraction of computational cost. The data set used in this paper is made public, establishing a benchmark for this important problem
机译:在图像中检测人物是计算机视觉中几个重要应用领域的关键。本文对行人分类进行了深入的实验研究。检查了多个特征分类器组合的ROC性能和效率。我们研究了全局,局部和自适应与非自适应特征,例如PCA系数,Haar小波和局部感受野(LRF)。在分类器方面,我们考虑了流行的支持向量机(SVM),前馈神经网络和k近邻分类器。实验是在一个大型数据集上进行的,该数据集由4,000个行人和在室外城市环境中捕获的25,000多个非行人(带标签)图像组成。通过分析由变化的训练和测试集引起的性能差异,可以获得具有统计意义的结果。此外,我们研究了分类性能和训练样本量之间的关系。通过增加手动标记的训练数据的数量或通过使用自动引导或级联技术来调整样本大小。我们的实验表明,具有LRF功能的SVM的新颖组合效果最佳。但是,增强的Haar小波级联可以达到相当有竞争力的结果,而计算成本却很少。本文使用的数据集是公开的,为这个重要问题建立了基准

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号