【24h】

Generic object recognition with boosting

机译:增强的通用对象识别

获取原文
获取原文并翻译 | 示例

摘要

This paper explores the power and the limitations of weakly supervised categorization. We present a complete framework that starts with the extraction of various local regions of either discontinuity or homogeneity. A variety of local descriptors can be applied to form a set of feature vectors for each local region. Boosting is used to learn a subset of such feature vectors (weak hypotheses) and to combine them into one final hypothesis for each visual category. This combination of individual extractors and descriptors leads to recognition rates that are superior to other approaches which use only one specific extractor/descriptor setting. To explore the limitation of our system, we had to set up new, highly complex image databases that show the objects of interest at varying scales and poses, in cluttered background, and under considerable occlusion. We obtain classification results up to 81 percent ROC-equal error rate on the most complex of our databases. Our approach outperforms all comparable solutions on common databases.
机译:本文探讨了弱监督分类的功能和局限性。我们提出了一个完整的框架,该框架从提取不连续或同质的各个局部区域开始。可以应用各种局部描述符来为每个局部区域形成一组特征向量。 Boosting用于学习此类特征向量(弱假设)的子集,并将其组合为每个视觉类别的一个最终假设。单个提取器和描述符的这种组合导致的识别率优于仅使用一种特定提取器/描述符设置的其他方法。为了探索我们系统的局限性,我们必须建立新的,高度复杂的图像数据库,以杂乱的背景和相当大的遮挡,以不同的比例和姿势显示感兴趣的对象。在我们最复杂的数据库中,我们获得的分类结果的ROC等效错误率高达81%。我们的方法优于通用数据库上所有可比的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号