首页> 外文期刊>Pattern recognition letters >A boosting approach for the simultaneous detection and segmentation of generic objects
【24h】

A boosting approach for the simultaneous detection and segmentation of generic objects

机译:同时检测和分割通用对象的增强方法

获取原文
获取原文并翻译 | 示例

摘要

Numerous approaches to object detection and segmentation have been proposed in recent years. However, in some general situations these methods are prone to fail due to the nature of the object. For instance, classical approaches to object detection and segmentation obtain good results for some specific object classes (i.e., pedestrian detection or sky segmentation). However, these methods have troubles detecting or segmenting object classes with different distinctive characteristics (i.e., cars and horses versus sky and road). In this paper, we propose a general framework to simultaneously perform object detection and segmentation on objects of different nature. Our approach is based on a boosting procedure which automatically decides - according to the object properties - whether it is better to give more weight to the detection or segmentation process to improve both results. For instance, for some objects, the detection may help to better segment, and viceversa. We validate our approach using different object classes from the well-known LabelMe, TUD and Weizmann databases to obtain competitive detection and segmentation results. Furthermore, our experiments show that the proposed approach is able to correctly annotate new images returned by Internet search engines even when the system is trained with few image examples.
机译:近年来,已经提出了许多用于物体检测和分割的方法。但是,在某些一般情况下,由于对象的性质,这些方法容易失败。例如,经典的物体检测和分割方法对于某些特定的物体类别(即行人检测或天空分割)获得了良好的结果。但是,这些方法在检测或分割具有不同鲜明特征的对象类别(即,汽车和马匹与天空和道路)方面存在麻烦。在本文中,我们提出了一个通用框架,可同时对不同性质的对象执行对象检测和分割。我们的方法基于增强过程,该过程根据对象属性自动确定是否最好对检测或分割过程赋予更多权重以同时改善两个结果。例如,对于某些对象,检测可能有助于更好地进行分割,反之亦然。我们使用来自著名的LabelMe,TUD和Weizmann数据库的不同对象类来验证我们的方法,以获得竞争性检测和分割结果。此外,我们的实验表明,即使系统只训练了很少的图像示例,所提出的方法仍能够正确注释Internet搜索引擎返回的新图像。

著录项

  • 来源
    《Pattern recognition letters》 |2013年第13期|1490-1498|共9页
  • 作者单位

    Department of Technology and Computer Architecture, University of Cirona, Campus de Montilivi, 17071 Cirona, Spain;

    Department of Technology and Computer Architecture, University of Cirona, Campus de Montilivi, 17071 Cirona, Spain;

    Department of Technology and Computer Architecture, University of Cirona, Campus de Montilivi, 17071 Cirona, Spain;

    Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Object detection; Object segmentation; Boosting; Semiautomatic annotation;

    机译:对象检测;对象分割;助推;半自动注释;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号