首页> 外文期刊>Journal of robotic systems >Simultaneous Egomotion Estimation, Segmentation, and Moving Object Detection
【24h】

Simultaneous Egomotion Estimation, Segmentation, and Moving Object Detection

机译:同时自我运动估计,分割和运动对象检测

获取原文
获取原文并翻译 | 示例

摘要

Robust egomotion estimation is a key prerequisite for making a robot truly autonomous. In previous work, a multimodel extension of random sample consensus (RANSAC) was introduced to deal with environments with rapid changes by incorporating moving object information. A multiscale matching algorithm was also proposed to resolve the issue of imperfect segmentation. In this paper, we present a novel specialization of RANSAC that extends the previous work. A unified framework is introduced to achieve simultaneously egomotion estimation, multiscale segmentation, and moving object detection in the RANSAC paradigm. The motivation of this work is to provide a robust real-time solution to the problem of egomotion estimation, segmentation, and moving object detection in highly dynamic environments. The idea is to augment the discriminative power of spatial and temporal appearances of objects by the spatiotemporal consistency. The objective is twofold. First, split mismerged segments and distinguish nonstationary objects from stationary objects by the spatial consistency. Second, merge oversegmented segments-and differentiate moving objects from outlying objects by the temporal consistency. Moving objects of considerably different sizes, from pedestrians to trucks, can be properly segmented and correctly detected. We also show that the performance of egomotion estimation can be further improved by taking into account both stationary and moving object information. Our approach is extensively evaluated on challenging data sets and compared to the state of the art. The experiments also show that our approach serves as a general framework that works well with various planar range data.
机译:鲁棒的自我运动估计是使机器人真正实现自主的关键前提。在先前的工作中,引入了随机样本共识(RANSAC)的多模型扩展,以通过合并移动对象信息来应对快速变化的环境。还提出了一种多尺度匹配算法来解决不完美分割的问题。在本文中,我们提出了一种新颖的RANSAC专业化技术,扩展了以前的工作。引入了统一的框架,以在RANSAC范式中同时实现自我估计,多尺度分割和运动对象检测。这项工作的目的是提供一个强大的实时解决方案,以解决高度动态环境中的自我估计,分割和运动对象检测问题。这个想法是通过时空一致性来增强对象的时空外观的判别能力。目标是双重的。首先,将误合并的段分开,通过空间一致性将静止物体与静止物体区分开。其次,合并超分段的片段,并通过时间一致性将移动的对象与孤立的对象区分开。可以正确分割并正确检测从行人到卡车的大小各异的移动物体。我们还表明,通过同时考虑静止和运动物体信息,可以进一步提高自我估计的性能。我们的方法已在具有挑战性的数据集上得到了广泛评估,并与最新技术进行了比较。实验还表明,我们的方法可作为适用于各种平面范围数据的通用框架。

著录项

  • 来源
    《Journal of robotic systems》 |2011年第4期|p.565-588|共24页
  • 作者

    Shao-Wen Yang; Chieh-Chih Wans;

  • 作者单位

    Department of Computer Science and Information Engineering, National 'Taiwan University, Taipei 10607, Taiwan;

    Department of Computer Science and Information Engineering, Graduate Institute of'Networking and Multimedia, National Taiwan University, Taipei 10607, Taiwan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号