首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Modeling, Clustering, and Segmenting Video with Mixtures of Dynamic Textures
【24h】

Modeling, Clustering, and Segmenting Video with Mixtures of Dynamic Textures

机译:使用动态纹理混合对视频进行建模,聚类和分段

获取原文
获取原文并翻译 | 示例

摘要

A dynamic texture is a spatio-temporal generative model for video, which represents video sequences as observations from a linear dynamical system. This work studies the mixture of dynamic textures, a statistical model for an ensemble of video sequences that is sampled from a finite collection of visual processes, each of which is a dynamic texture. An expectationmaximization (EM) algorithm is derived for learning the parameters of the model, and the model is related to previous works in linear systems, machine learning, time-series clustering, control theory, and computer vision. Through experimentation, it is shown that the mixture of dynamic textures is a suitable representation for both the appearance and dynamics of a variety of visual processes that have traditionally been challenging for computer vision (e.g. fire, steam, water, vehicle and pedestrian traffic, etc.). When compared with state-of-the-art methods in motion segmentation, including both temporal texture methods and traditional representations (e.g. optical flow or other localized motion representations), the mixture of dynamic textures achieves superior performance in the problems of clustering and segmenting video of such processes.
机译:动态纹理是视频的时空生成模型,它将视频序列表示为来自线性动力学系统的观察结果。这项工作研究了动态纹理的混合,动态纹理是从有限的视觉过程集合中采样的一组视频序列的统计模型,每个视觉过程都是动态纹理。推导了期望最大化(EM)算法以学习模型的参数,并且该模型与线性系统,机器学习,时间序列聚类,控制理论和计算机视觉中的先前工作相关。通过实验表明,动态纹理的混合是各种视觉过程的外观和动力学的合适代表,这些视觉过程传统上对计算机视觉(如火,蒸汽,水,车辆和行人交通等)具有挑战性)。与最新的运动分割方法(包括时间纹理方法和传统表示(例如光流或其他局部运动表示))进行比较时,动态纹理的混合在视频的聚类和分割问题上具有出色的性能。这样的过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号