首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Theoretical Foundations of Spatially-Variant Mathematical Morphology Part II: Gray-Level Images
【24h】

Theoretical Foundations of Spatially-Variant Mathematical Morphology Part II: Gray-Level Images

机译:空间变异数学形态学的理论基础第二部分:灰度图像

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we develop a spatially-variant (SV) mathematical morphology theory for gray-level signals and images in the Euclidean space. The proposed theory preserves the geometrical concept of the structuring function, which provides the foundation of classical morphology and is essential in signal and image processing applications. We define the basic SV gray-level morphological operators (i.e., SV gray-level erosion, dilation, opening, and closing) and investigate their properties. We demonstrate the ubiquity of SV gray-level morphological systems by deriving a kernel representation for a large class of systems, called V-systems, in terms of the basic SV graylevel morphological operators. A V-system is defined to be a gray-level operator, which is invariant under gray-level (vertical) translations. Particular attention is focused on the class of SV flat gray-level operators. The kernel representation for increasing V-systems is a generalization of Maragos'' kernel representation for increasing and translation-invariant function-processing systems. A representation of V-systems in terms of their kernel elements is established for increasing and upper-semi-continuous V-systems. This representation unifies a large class of spatially-variant linear and non-linear systems under the same mathematical framework. Finally, simulation results show the potential power of the general theory of gray-level spatially-variant mathematical morphology in several image analysis and computer vision applications.
机译:在本文中,我们为欧几里得空间中的灰度信号和图像开发了一种空间变异(SV)数学形态学理论。提出的理论保留了结构函数的几何概念,为经典形态学奠定了基础,并且在信号和图像处理应用中必不可少。我们定义了基本的SV灰度形态算子(即SV灰度腐蚀,膨胀,打开和关闭),并研究了它们的特性。通过根据基本的SV灰度形态学算子推导一大类称为V系统的系统的内核表示,我们证明了SV灰度形态学系统的普遍性。 V系统定义为灰度算子,它在灰度(垂直)平移下不变。特别注意的是SV平面灰度运算符的类别。递增V系统的内核表示是Maragos递增和平移不变函数处理系统的内核表示的概括。建立了V系统以其内核元素表示的形式,用于增加和上半连续的V系统。这种表示在同一数学框架下统一了一大类空间变化的线性和非线性系统。最后,仿真结果显示了灰度级空间变异数学形态学通用理论在几种图像分析和计算机视觉应用中的潜在能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号