首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Theoretical Foundations of Spatially-Variant Mathematical Morphology Part I: Binary Images
【24h】

Theoretical Foundations of Spatially-Variant Mathematical Morphology Part I: Binary Images

机译:空间变异数学形态学的理论基础第一部分:二进制图像

获取原文
获取原文并翻译 | 示例

摘要

We develop a general theory of spatially-variant (SV) mathematical morphology for binary images in the Euclidean space. The basic SV morphological operators (i.e., SV erosion, SV dilation, SV opening and SV closing) are defined. We demonstrate the ubiquity of SV morphological operators by providing a SV kernel representation of increasing operators. The latter representation is a generalization of Matheron''s representation theorem of increasing and translation-invariant operators. The SV kernel representation is redundant, in the sense that a smaller subset of the SV kernel is sufficient for the representation of increasing operators. We provide sufficient conditions for the existence of the minimal basis representation in terms of upper-semi-continuity in the hit-or-miss topology. The latter minimal basis representation is a generalization of Maragos'' minimal basis representation for increasing and translation-invariant operators. Moreover, we investigate the upper-semi-continuity property of the basic SV morphological operators. Several examples are used to demonstrate that the theory of spatially-variant mathematical morphology provides a general framework for the unification of various morphological schemes based on spatiallyvariant geometrical structuring elements (e.g., circular, affine and motion morphology). Simulation results illustrate the theory of the proposed spatially-variant morphological framework and show its potential power in various image processing applications.
机译:我们为欧几里得空间中的二进制图像开发了空间变异(SV)数学形态学的一般理论。定义了基本的SV形态运算符(即SV腐蚀,SV膨胀,SV打开和SV关闭)。通过提供递增运算符的SV内核表示,我们证明了SV形态运算符的普遍性。后者表示是递增和平移不变算子的Matheron表示定理的推广。 SV内核表示是多余的,从某种意义上说,SV内核的较小子集足以表示增加的运算符。我们为命中或遗漏拓扑中的上半连续性提供了最小基本表示形式存在的充分条件。后者的最小基数表示是Maragos递增和平移不变算子的最小基数表示的推广。此外,我们研究了基本SV形态算子的上半连续性。使用几个示例来证明空间变异数学形态学理论为基于空间变异几何结构元素(例如圆形,仿射和运动形态学)的各种形态学方案的统一提供了一个通用框架。仿真结果说明了所提出的空间变异形态框架的理论,并显示了其在各种图像处理应用中的潜在能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号