【24h】

Understanding Blind Deconvolution Algorithms

机译:了解盲反卷积算法

获取原文
获取原文并翻译 | 示例

摘要

Blind deconvolution is the recovery of a sharp version of a blurred image when the blur kernel is unknown. Recent algorithms have afforded dramatic progress, yet many aspects of the problem remain challenging and hard to understand. The goal of this paper is to analyze and evaluate recent blind deconvolution algorithms both theoretically and experimentally. We explain the previously reported failure of the naive MAP approach by demonstrating that it mostly favors no-blur explanations. We show that, using reasonable image priors, a naive simulations MAP estimation of both latent image and blur kernel is guaranteed to fail even with infinitely large images sampled from the prior. On the other hand, we show that since the kernel size is often smaller than the image size, a MAP estimation of the kernel alone is well constrained and is guaranteed to succeed to recover the true blur. The plethora of recent deconvolution techniques makes an experimental evaluation on ground-truth data important. As a first step toward this experimental evaluation, we have collected blur data with ground truth and compared recent algorithms under equal settings. Additionally, our data demonstrate that the shift-invariant blur assumption made by most algorithms is often violated.
机译:盲反卷积是模糊内核未知时对模糊图像的清晰版本的恢复。最近的算法已经取得了巨大进步,但是问题的许多方面仍然具有挑战性并且难以理解。本文的目的是在理论上和实验上分析和评估最新的盲反卷积算法。我们通过证明原始MAP方法主要支持无模糊的解释来解释先前报道的方法。我们表明,使用合理的图像先验,即使从先验中采样到无限大的图像,也可以保证对潜像和模糊核的朴素模拟MAP估计均会失败。另一方面,我们表明,由于内核大小通常小于图像大小,因此仅内核的MAP估计就受到了很好的约束,并且可以确保成功恢复真实的模糊。最近大量的反卷积技术使对地面真实数据的实验评估变得重要。作为进行此实验评估的第一步,我们收集了具有地面真实性的模糊数据,并比较了在相同设置下的最新算法。此外,我们的数据表明,通常会违反大多数算法所做的不变位移模糊假设。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号