首页> 外文OA文献 >Understanding and evaluating blind deconvolution algorithms
【2h】

Understanding and evaluating blind deconvolution algorithms

机译:理解和评估盲去卷积算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Blind deconvolution is the recovery of a sharp version of a blurred image when the blur kernel is unknown. Recent algorithms have afforded dramatic progress, yet many aspects of the problem remain challenging and hard to understand.The goal of this paper is to analyze and evaluate recent blind deconvolution algorithms both theoretically and experimentally. We explain the previously reported failure of the naive MAP approach by demonstrating that it mostly favors no-blur explanations. On the other hand we show that since the kernel size is often smaller than the image size a MAP estimation of the kernel alone can be well constrained and accurately recover the true blur. The plethora of recent deconvolution techniques makes an experimental evaluation on ground-truth data important. We have collected blur data with ground truth and compared recent algorithms under equal settings. Additionally, our data demonstrates that the shift-invariant blur assumption made by most algorithms is often violated.
机译:盲反卷积是模糊内核未知时对模糊图像的清晰版本的恢复。最近的算法已经取得了巨大的进步,但是问题的许多方面仍然具有挑战性并且难以理解。本文的目的是在理论上和实验上分析和评估最近的盲反卷积算法。我们通过证明原始MAP方法主要支持无模糊的解释来解释先前报道的方法。另一方面,我们表明,由于内核大小通常小于图像大小,因此仅内核的MAP估计就可以得到很好的约束,并可以准确地恢复真实的模糊。最近大量的反卷积技术使对地面真实数据的实验评估变得重要。我们收集了具有地面真实性的模糊数据,并比较了在相同设置下的最新算法。此外,我们的数据表明,大多数算法经常会犯不变移模糊假设。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号