首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Reconstructing 3D Face Model with Associated Expression Deformation from a Single Face Image via Constructing a Low-Dimensional Expression Deformation Manifold
【24h】

Reconstructing 3D Face Model with Associated Expression Deformation from a Single Face Image via Constructing a Low-Dimensional Expression Deformation Manifold

机译:通过构造低维表情变形歧管从单个脸部图像重建具有相关表情变形的3D脸部模型

获取原文
获取原文并翻译 | 示例

摘要

Facial expression modeling is central to facial expression recognition and expression synthesis for facial animation. In this work, we propose a manifold-based 3D face reconstruction approach to estimating the 3D face model and the associated expression deformation from a single face image. With the proposed robust weighted feature map (RWF), we can obtain the dense correspondences between 3D face models and build a nonlinear 3D expression manifold from a large set of 3D facial expression models. Then a Gaussian mixture model in this manifold is learned to represent the distribution of expression deformation. By combining the merits of morphable neutral face model and the low-dimensional expression manifold, a novel algorithm is developed to reconstruct the 3D face geometry as well as the facial deformation from a single face image in an energy minimization framework. Experimental results on simulated and real images are shown to validate the effectiveness and accuracy of the proposed algorithm.
机译:面部表情建模对于面部表情的表情识别和表情合成至关重要。在这项工作中,我们提出了一种基于流形的3D人脸重建方法,用于从单个人脸图像中估算3D人脸模型和相关的表情变形。借助提出的鲁棒加权特征图(RWF),我们可以获得3D面部模型之间的密集对应关系,并从大量3D面部表情模型集中构建非线性3D表达流形。然后学习该流形中的高斯混合模型来表示表达式变形的分布。通过结合可变形的中性面部模型和低维表达流形的优点,开发了一种新颖的算法,可以在能量最小化框架中从单张面部图像中重建3D面部几何形状以及面部变形。实验结果表明,模拟和真实图像可以验证所提算法的有效性和准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号