首页> 外文期刊>The Visual Computer >A deformation model to reduce the effect of expressions in 3D face recognition
【24h】

A deformation model to reduce the effect of expressions in 3D face recognition

机译:用于减少表情在3D人脸识别中的影响的变形模型

获取原文
获取原文并翻译 | 示例

摘要

In 3D face recognition, most work utilizes the rigid parts of face surfaces for matching to exclude the distortion caused by expressions. However, across a broad range of expressions, the rigid parts may not always be uniform and cover large parts of faces. On the other hand, the non-rigid regions of face surfaces also contain useful information for recognition. In this paper, we include the non-rigid regions besides the rigid parts for 3D face recognition. A deformation model is proposed to deform the non-rigid regions to the shapes that are more similar between intra-personal samples but less similar between inter-personal samples. Together with the rigid regions, the deformed parts make samples more discriminable so that the effect of expressions is reduced. The first part of our model uses the target gradient fields from enrolled samples to depress the distortion of the non-rigid regions. The gradient field works in the differential domain. According to the Poisson equation, a smooth deformed shape can be computed by a linear system. The second part of the model is the definition of a surface property that determines the deformation ability of different face regions. Unlike the target gradient fields that improve the similarity of intra-personal samples, the original topology and surface property can keep inter-personal samples sufficiently dissimilar. Our deformation model can be used to improve existing 3D face recognition methods. Experiments are carried out on FRGC and BU-3DFE databases. There are about 8-10% improvements obtained after applying this deformation model to the baseline ICP method. Compared with other deformation models, the experimental results show that our model has advantages on both recognition performance and computational efficiency.
机译:在3D人脸识别中,大多数工作都利用人脸表面的刚性部分进行匹配,以排除由表情引起的变形。但是,在广泛的表达方式中,刚性部分可能并不总是均匀的,并且覆盖了大部分的面。另一方面,面部非刚性区域还包含有用的识别信息。在本文中,除了用于3D人脸识别的刚性零件之外,我们还包括非刚性区域。提出了一种变形模型,以将非刚性区域变形为在个人内部样本之间更相似但在个人间样本之间相似度较小的形状。与刚性区域一起,变形的部分使样本更易于区分,从而降低了表达的效果。模型的第一部分使用来自已注册样本的目标梯度场来抑制非刚性区域的变形。梯度场在微分域中起作用。根据泊松方程,可以通过线性系统计算出平滑的变形形状。该模型的第二部分是确定不同面部区域变形能力的表面特性的定义。与可提高个人样本相似度的目标梯度场不同,原始拓扑和表面属性可以使人际样本保持足够的相似度。我们的变形模型可用于改进现有的3D人脸识别方法。实验在FRGC和BU-3DFE数据库上进行。将此变形模型应用于基准ICP方法后,可获得约8-10%的改进。与其他变形模型相比,实验结果表明我们的模型在识别性能和计算效率上均具有优势。

著录项

  • 来源
    《The Visual Computer》 |2011年第5期|p.333-345|共13页
  • 作者单位

    Department of Information Engineering, The Chinese Universityof Hong Kong, Hong Kong, China;

    College of Computer Science, Zhejiang University, Hangzhou,China;

    Department of Information Engineering, The Chinese Universityof Hong Kong, Hong Kong, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    3D face recognition; deformation; expression; poisson equation;

    机译:3D人脸识别;形变;表达;泊松方程;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号