首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Single and Multiple Object Tracking Using Log-Euclidean Riemannian Subspace and Block-Division Appearance Model
【24h】

Single and Multiple Object Tracking Using Log-Euclidean Riemannian Subspace and Block-Division Appearance Model

机译:使用对数欧式黎曼子空间和分块外观模型的单目标和多目标跟踪

获取原文
获取原文并翻译 | 示例

摘要

Object appearance modeling is crucial for tracking objects, especially in videos captured by nonstationary cameras and for reasoning about occlusions between multiple moving objects. Based on the log-euclidean Riemannian metric on symmetric positive definite matrices, we propose an incremental log-euclidean Riemannian subspace learning algorithm in which covariance matrices of image features are mapped into a vector space with the log-euclidean Riemannian metric. Based on the subspace learning algorithm, we develop a log-euclidean block-division appearance model which captures both the global and local spatial layout information about object appearances. Single object tracking and multi-object tracking with occlusion reasoning are then achieved by particle filtering-based Bayesian state inference. During tracking, incremental updating of the log-euclidean block-division appearance model captures changes in object appearance. For multi-object tracking, the appearance models of the objects can be updated even in the presence of occlusions. Experimental results demonstrate that the proposed tracking algorithm obtains more accurate results than six state-of-the-art tracking algorithms.
机译:对象外观建模对于跟踪对象(尤其是在非平稳摄像机捕获的视频中)以及推理多个运动对象之间的遮挡至关重要。基于对称正定矩阵的对数欧氏黎曼度量,我们提出了一种增量对数欧氏黎曼子空间学习算法,该算法将图像特征的协方差矩阵与对数欧氏黎曼度量映射到向量空间中。基于子空间学习算法,我们开发了一个对数欧式块分割外观模型,该模型可以捕获有关对象外观的全局和局部空间布局信息。然后,通过基于粒子滤波的贝叶斯状态推断,实现了具有闭塞推理的单目标跟踪和多目标跟踪。在跟踪期间,对数欧式块划分外观模型的增量更新将捕获对象外观的变化。对于多对象跟踪,即使存在遮挡,也可以更新对象的外观模型。实验结果表明,所提出的跟踪算法比六种最新的跟踪算法可获得更准确的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号