首页> 外文期刊>IEEE Transactions on Image Processing >Model-Free Tracker for Multiple Objects Using Joint Appearance and Motion Inference
【24h】

Model-Free Tracker for Multiple Objects Using Joint Appearance and Motion Inference

机译:使用联合外观和运动推断的多个对象的无模型跟踪器

获取原文
获取原文并翻译 | 示例

摘要

Model-free tracking is a widely accepted approach to track an arbitrary object in a video using a single frame annotation with no further prior knowledge about the object of interest. Extending this problem to track multiple objects is really challenging because: 1) the tracker is not aware of the objects' type while trying to distinguish them from background (detection task) and 2) the tracker needs to distinguish one object from other potentially similar objects (data association task) to generate stable trajectories. In order to track multiple arbitrary objects, most existing model-free tracking approaches rely on tracking each target individually by updating their appearance model independently. Therefore, in this scenario they often fail to perform well due to confusion between the appearance of similar objects, their sudden appearance changes and occlusion. To tackle this problem, we propose to use both appearance and motion models, and to learn those jointly using graphical models and the deep neural networks features. We introduce an indicator variable to predict sudden appearance change and/or occlusion. When these happen, our model does not update the appearance model thus avoiding using the background and/or incorrect object to update the appearance of the object of interest mistakenly, and relies on our motion model to track. Moreover, we consider the correlation among all targets, and seek the joint optimal locations for all targets simultaneously as a graphical model inference problem. We learn the joint parameters for both appearance model and motion model in an online fashion under the framework of LaRank. Experiment results show that our method achieved superior performance compared to the competitive methods.
机译:无模型跟踪是一种广泛接受的方法,可以使用单一帧注释跟踪视频中的任意对象,没有进一步的关于感兴趣对象的先验知识。扩展此问题以跟踪多个对象真的具有挑战性,因为:1)跟踪器不知道对象类型,同时尝试将它们与背景(检测任务)和2区分开来区分它们,并且跟踪器需要将一个对象与其他潜在的对象区分开来(数据关联任务)生成稳定的轨迹。为了跟踪多个任意对象,通过独立更新其外观模型,大多数现有的无模式跟踪方法依赖于单独跟踪每个目标。因此,在这种情况下,由于类似物体的外观之间的困惑,它们常常无法表现得很好,但它们的突然外观变化和闭塞。为了解决这个问题,我们建议使用外观和运动模型,并使用图形模型和深神经网络的功能来学习那些。我们介绍指示变量以预测突然的外观变化和/或闭塞。当这些发生时,我们的模型不会更新外观模型,从而避免使用背景和/或不正确的对象误解了感兴趣对象的外观,并依赖于我们的运动模型来跟踪。此外,我们考虑所有目标之间的相关性,并同时寻求所有目标的联合最佳位置作为图形模型推理问题。我们在Larrank框架下以在线方式学习外观模型和运动模型的联合参数。实验结果表明,与竞争方法相比,我们的方法实现了卓越的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号