首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Explicit Modeling of Human-Object Interactions in Realistic Videos
【24h】

Explicit Modeling of Human-Object Interactions in Realistic Videos

机译:真实视频中人与对象交互的显式建模

获取原文
获取原文并翻译 | 示例

摘要

We introduce an approach for learning human actions as interactions between persons and objects in realistic videos. Previous work typically represents actions with low-level features such as image gradients or optical flow. In contrast, we explicitly localize in space and track over time both the object and the person, and represent an action as the trajectory of the object w.r.t. to the person position. Our approach relies on state-of-the-art techniques for human detection [32], object detection [10], and tracking [39]. We show that this results in human and object tracks of sufficient quality to model and localize human-object interactions in realistic videos. Our human-object interaction features capture the relative trajectory of the object w.r.t. the human. Experimental results on the Coffee and Cigarettes dataset [25], the video dataset of [19], and the Rochester Daily Activities dataset [29] show that 1) our explicit human-object model is an informative cue for action recognition; 2) it is complementary to traditional low-level descriptors such as 3D--HOG [23] extracted over human tracks. We show that combining our human-object interaction features with 3D-HOG improves compared to their individual performance as well as over the state of the art [23], [29].
机译:我们介绍一种用于学习人类行为的方法,作为现实视频中人与物之间的交互。先前的工作通常代表具有低级特征的动作,例如图像梯度或光流。相反,我们明确地在空间中定位并随时间跟踪对象和人,并将动作表示为对象的轨迹。到人的位置。我们的方法依赖于人类检测[32],物体检测[10]和跟踪[39]的最新技术。我们表明,这导致人和物体的轨道质量足够高,可以在逼真的视频中建模和定位人与物体之间的交互。我们的人与物体交互功能捕获了物体相对运动的轨迹。人类。在Coffee and Cigarettes数据集[25],视频数据集[19]和Rochester Daily Activities数据集[29]上的实验结果表明:1)我们明确的人为对象模型是进行动作识别的有益线索; 2)它是对传统低层描述符的补充,例如通过人类轨迹提取的3D-HOG [23]。我们证明,与3D-HOG相比,将我们的人与对象交互功能相结合,与它们的个人性能以及现有技术相比,它们的性能都有所提高[23],[29]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号