首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Recognizing Human-Object Interactions in Still Images by Modeling the Mutual Context of Objects and Human Poses
【24h】

Recognizing Human-Object Interactions in Still Images by Modeling the Mutual Context of Objects and Human Poses

机译:通过对物体和人体姿势的相互关系建模来识别静止图像中的人物体相互作用

获取原文
获取原文并翻译 | 示例

摘要

Detecting objects in cluttered scenes and estimating articulated human body parts from 2D images are two challenging problems in computer vision. The difficulty is particularly pronounced in activities involving human-object interactions (e.g., playing tennis), where the relevant objects tend to be small or only partially visible and the human body parts are often self-occluded. We observe, however, that objects and human poses can serve as mutual context to each other—recognizing one facilitates the recognition of the other. In this paper, we propose a mutual context model to jointly model objects and human poses in human-object interaction activities. In our approach, object detection provides a strong prior for better human pose estimation, while human pose estimation improves the accuracy of detecting the objects that interact with the human. On a six-class sports data set and a 24-class people interacting with musical instruments data set, we show that our mutual context model outperforms state of the art in detecting very difficult objects and estimating human poses, as well as classifying human-object interaction activities.
机译:在凌乱的场景中检测物体并从2D图像估计关节的人体部位是计算机视觉中的两个难题。在涉及人与物体的相互作用的活动中(例如打网球)该困难特别明显,其中相关物体趋于较小或仅部分可见,并且人体部位经常被自我遮挡。但是,我们观察到,物体和人体姿势可以作为彼此的上下文–识别一个物体可以促进另一个物体的识别。在本文中,我们提出了一个相互关联的上下文模型,以在人与人之间的交互活动中共同对物体和人体姿势进行建模。在我们的方法中,物体检测为更好的人体姿势估计提供了强大的先验,而人体姿势估计则提高了检测与人类互动的物体的准确性。在六类体育数据集和24类人与乐器数据集进行交互的过程中,我们表明,在检测非常困难的对象和估计人体姿势以及对人对象进行分类方面,我们的相互关联模型优于最新技术互动活动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号