首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >A Globally-Variant Locally-Constant Model for Fusion of Labels from Multiple Diverse Experts without Using Reference Labels
【24h】

A Globally-Variant Locally-Constant Model for Fusion of Labels from Multiple Diverse Experts without Using Reference Labels

机译:全局变量局部常数模型,用于在不使用参考标签的情况下融合来自多个不同专家的标签

获取原文
获取原文并翻译 | 示例

摘要

Researchers have shown that fusion of categorical labels from multiple experts—humans or machine classifiers—improves the accuracy and generalizability of the overall classification system. Simple plurality is a popular technique for performing this fusion, but it gives equal importance to labels from all experts, who may not be equally reliable or consistent across the dataset. Estimation of expert reliability without knowing the reference labels is, however, a challenging problem. Most previous works deal with these challenges by modeling expert reliability as constant over the entire data (feature) space. This paper presents a model based on the consideration that in dealing with real-world data, expert reliability is variable over the complete feature space but constant over local clusters of homogeneous instances. This model jointly learns a classifier and expert reliability parameters without assuming knowledge of the reference labels using the Expectation-Maximization (EM) algorithm. Classification experiments on simulated data, data from the UCI Machine Learning Repository, and two emotional speech classification datasets show the benefits of the proposed model. Using a metric based on the Jensen-Shannon divergence, we empirically show that the proposed model gives greater benefit for datasets where expert reliability is highly variable over the feature space.
机译:研究人员表明,融合来自人类或机器分类器等多个专家的分类标签,可以提高整个分类系统的准确性和通用性。简单复数是执行此融合的一种流行技术,但是它对来自所有专家的标签给予了同等的重视,他们在整个数据集中的可靠性或一致性可能并不相同。然而,在不知道参考标签的情况下评估专家的可靠性是一个具有挑战性的问题。以前的大多数工作都是通过将专家的可靠性建模为整个数据(特征)空间的常数来应对这些挑战。本文提出了一种基于以下考虑的模型:在处理现实数据时,专家的可靠性在整个特征空间上是可变的,但在同类实例的局部簇上是恒定的。该模型在不假设使用期望最大化(EM)算法了解参考标签的情况下,共同学习分类器和专家可靠性参数。对模拟数据,UCI机器学习存储库中的数据以及两个情感语音分类数据集的分类实验表明了该模型的优势。使用基于Jensen-Shannon散度的度量,我们从经验上表明,该模型为专家可靠性在特征空间上高度可变的数据集提供了更大的好处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号