首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Learning With Augmented Features for Supervised and Semi-Supervised Heterogeneous Domain Adaptation
【24h】

Learning With Augmented Features for Supervised and Semi-Supervised Heterogeneous Domain Adaptation

机译:具有增强功能的有监督和半监督异构域自适应学习

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we study the heterogeneous domain adaptation (HDA) problem, in which the data from the source domain and the target domain are represented by heterogeneous features with different dimensions. By introducing two different projection matrices, we first transform the data from two domains into a common subspace such that the similarity between samples across different domains can be measured. We then propose a new feature mapping function for each domain, which augments the transformed samples with their original features and zeros. Existing supervised learning methods (e.g., SVM and SVR) can be readily employed by incorporating our newly proposed augmented feature representations for supervised HDA. As a showcase, we propose a novel method called Heterogeneous Feature Augmentation (HFA) based on SVM. We show that the proposed formulation can be equivalently derived as a standard Multiple Kernel Learning (MKL) problem, which is convex and thus the global solution can be guaranteed. To additionally utilize the unlabeled data in the target domain, we further propose the semi-supervised HFA (SHFA) which can simultaneously learn the target classifier as well as infer the labels of unlabeled target samples. Comprehensive experiments on three different applications clearly demonstrate that our SHFA and HFA outperform the existing HDA methods.
机译:在本文中,我们研究了异构域适应(HDA)问题,其中源域和目标域的数据由具有不同维数的异构特征表示。通过引入两个不同的投影矩阵,我们首先将数据从两个域转换到一个公共子空间,以便可以测量跨不同域的样本之间的相似性。然后,我们为每个域提出一个新的特征映射函数,该函数以其原始特征和零来增加转换后的样本。现有的监督学习方法(例如SVM和SVR)可以通过合并我们针对监督HDA的新提出的增强特征表示而轻松采用。作为展示,我们提出了一种基于SVM的称为异质特征增强(HFA)的新方法。我们表明,所提出的公式可以等效地导出为标准的多核学习(MKL)问题,这是凸的,因此可以保证全局解决方案。为了在目标域中另外利用未标记的数据,我们进一步提出了半监督HFA(SHFA),它可以同时学习目标分类器并推断未标记目标样本的标记。在三种不同应用上的综合实验清楚地表明,我们的SHFA和HFA优于现有的HDA方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号