首页> 外文期刊>Knowledge-Based Systems >Sparse feature space representation: A unified framework for semi-supervised and domain adaptation learning
【24h】

Sparse feature space representation: A unified framework for semi-supervised and domain adaptation learning

机译:稀疏特征空间表示:用于半监督和领域自适应学习的统一框架

获取原文
获取原文并翻译 | 示例

摘要

In a semi-supervised domain adaptation (DA) task, one has access to only few labeled target examples. In this case, the success of DA needs the effective utilization of a large number of unlabeled target data to extract more discriminative information that is useful for generalization. To this end, we exploit in this paper the feature space embeddings of the target data as well as multi-source prior models to augment the discrimination space for the target function learning. Therefore, we propose a novel multi-source adaptation learning framework based on Sparse Feature Space Representation (SFSR), or called SFSR-MSAL for short. Specifically, the SFSR algorithm is first presented for the further construction of robust graph, on which the discriminative information can be smoothly propagated into the unlabeled target data by additionally incorporating the geometric structure of the target data. Considering the robustness in the semi-supervised DA, we replace the traditional 12-norm based least squares regression with the 12,,-norm sparse regression, and then construct the SFSR-graph based semi-supervised DA framework with multi-source adaptation constraints. Our framework is universal and can be easily degraded into semi-supervised learning by just tuning the regularization parameter. Moreover, to select the discriminative SFSR-graph Laplacians, we also introduce the ensemble SFSR-graph Laplacians regularization into SFSR-MSAL, thus further improving the performance of SFSR-MSAL. The validity of our methods including semi-supervised and DA learning are examined by several visual recognition tasks on some benchmark datasets, which demonstrate the superiority of our methods in comparison with other related state-of-the-art algorithms.
机译:在半监督域适应(DA)任务中,仅可以访问少数几个带标签的目标示例。在这种情况下,DA的成功需要有效利用大量未标记的目标数据来提取更多可用于泛化的判别信息。为此,我们在本文中利用目标数据的特征空间嵌入以及多源先验模型来增加目标函数学习的判别空间。因此,我们提出了一种基于稀疏特征空间表示(SFSR)的新型多源自适应学习框架,简称SFSR-MSAL。具体而言,首先提出SFSR算法以进一步构造鲁棒图,在该图上,通过附加合并目标数据的几何结构,可将判别信息平滑地传播到未标记的目标数据中。考虑到半监督DA的鲁棒性,我们将传统的基于12范数的最小二乘回归替换为12规范稀疏回归,然后构造具有多源自适应约束的基于SFSR图的半监督DA框架。我们的框架具有通用性,只需调整正则化参数即可轻松将其降级为半监督学习。此外,为了选择有区别的SFSR-graph拉普拉斯算子,我们还将整体SFSR-graph拉普拉斯算子正则化引入SFSR-MSAL中,从而进一步提高了SFSR-MSAL的性能。我们通过一些基准数据集上的多个视觉识别任务来检验我们的方法(包括半监督学习和DA学习)的有效性,这些任务证明了我们的方法与其他相关的最新算法相比的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号