首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Support Vector Machine Classifier With Pinball Loss
【24h】

Support Vector Machine Classifier With Pinball Loss

机译:支持向量机分类器具有弹球损失

获取原文
获取原文并翻译 | 示例

摘要

Traditionally, the hinge loss is used to construct support vector machine (SVM) classifiers. The hinge loss is related to the shortest distance between sets and the corresponding classifier is hence sensitive to noise and unstable for re-sampling. In contrast, the pinball loss is related to the quantile distance and the result is less sensitive. The pinball loss has been deeply studied and widely applied in regression but it has not been used for classification. In this paper, we propose a SVM classifier with the pinball loss, called pin-SVM, and investigate its properties, including noise insensitivity, robustness, and misclassification error. Besides, insensitive zone is applied to the pin-SVM for a sparse model. Compared to the SVM with the hinge loss, the proposed pin-SVM has the same computational complexity and enjoys noise insensitivity and re-sampling stability.
机译:传统上,铰链损耗用于构造支持向量机(SVM)分类器。铰链损耗与组之间的最短距离有关,因此相应的分类器对噪声敏感并且对于重新采样不稳定。相反,弹球损失与分位数距离有关,结果灵敏度较低。弹球损失已被深入研究并广泛应用于回归分析,但尚未用于分类。在本文中,我们提出了一种具有弹珠损失的SVM分类器,称为pin-SVM,并研究了其属性,包括噪声不敏感度,鲁棒性和分类错误。此外,对于稀疏模型,不敏感区域应用于pin-SVM。与具有铰链损耗的SVM相比,所提出的pin-SVM具有相同的计算复杂度,并且具有噪声不敏感度和重采样稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号