首页> 外文期刊>Engineering Applications of Artificial Intelligence >Support vector machine classifier with huberized pinball loss
【24h】

Support vector machine classifier with huberized pinball loss

机译:支持向量机分类器具有中心化的弹球损失

获取原文
获取原文并翻译 | 示例

摘要

The original support vector machine (SVM) uses the hinge loss function, which is non-differentiable and makes the problem difficult to solve in particular for regularized SVM, such as with l_1 -regularized. On the other hand, the hinge loss is sensitive to noise. To circumvent these drawbacks, a huberized pinball loss function is proposed. It is less sensitive to noise, similar to the pinball loss which is related to the quantile distance. The proposed loss function is differentiable everywhere and this differentiability can significantly reduce the computational cost for the SVM algorithm. The elastic net penalty is applied to the SVM and the support vector machine classifier with huberized pinball loss (HPSVM) is proposed. Due to the continuous differentiability of the huberized pinball loss function, the Proximal Gradient method is used to solve the proposed model. The numerical experiments on synthetic data, real world datasets confirm the robustness and effectiveness of the proposed method. Statistical comparison is performed to show the significant difference between the proposed method and other compered ones.
机译:原始的支持向量机(SVM)使用铰链损失函数,该函数是不可微的,尤其是对于正则化SVM(例如,具有l_1正规化),使问题难以解决。另一方面,铰链损耗对噪声敏感。为了克服这些缺点,提出了一种集中化的弹球丢失功能。它对噪声较不敏感,类似于与分位数距离有关的弹球损失。所提出的损失函数在任何地方都是可微分的,这种微分可显着降低SVM算法的计算成本。将弹性净罚分应用于支持向量机,并提出了带有球化损失的支持向量机分类器(HPSVM)。由于中心化弹球损失函数的连续可微性,因此采用近邻梯度法求解所提出的模型。对合成数据和现实世界数据集进行的数值实验证实了该方法的鲁棒性和有效性。进行统计比较以显示所提出的方法与其他比较方法之间的显着差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号