首页> 中文期刊> 《模式识别与人工智能》 >弹球支持张量机分类器

弹球支持张量机分类器

     

摘要

机器学习、模式识别、数据挖掘等领域中的输入模式常常是高阶张量.文中首先从向量模式推广到张量模式,提出弹球支持张量机模型.然后给出求解弹球支持张量机模型的序贯最小优化算法(SMO).为了保持张量的自然结构信息,同时加速训练过程,采用张量的秩-1分解代替原始张量计算张量内积.在向量数据和张量数据上进行的大量实验表明:对于向量数据,相比经典的积极集法,SMO的计算速度更快;对于张量数据,相比弹球支持向量机,弹球支持张量机具有更快的训练速度和更好的泛化能力.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号