首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Relational Learning and Network Modelling Using Infinite Latent Attribute Models
【24h】

Relational Learning and Network Modelling Using Infinite Latent Attribute Models

机译:使用无限潜在属性模型进行关系学习和网络建模

获取原文
获取原文并翻译 | 示例

摘要

Latent variable models for network data extract a summary of the relational structure underlying an observed network. The simplest possible models subdivide nodes of the network into clusters; the probability of a link between any two nodes then depends only on their cluster assignment. Currently available models can be classified by whether clusters are disjoint or are allowed to overlap. These models can explain a “flat” clustering structure. Hierarchical Bayesian models provide a natural approach to capture more complex dependencies. We propose a model in which objects are characterised by a latent feature vector. Each feature is itself partitioned into disjoint groups (subclusters), corresponding to a second layer of hierarchy. In experimental comparisons, the model achieves significantly improved predictive performance on social and biological link prediction tasks. The results indicate that models with a single layer hierarchy over-simplify real networks.
机译:网络数据的潜在变量模型提取了所观察网络基础的关系结构的摘要。最简单的模型将网络的节点细分为群集。那么,任何两个节点之间的链接概率仅取决于其群集分配。当前可用的模型可以通过群集是不相交还是被允许重叠来分类。这些模型可以解释“平坦”的聚类结构。多层贝叶斯模型提供了一种自然的方法来捕获更复杂的依赖关系。我们提出了一个模型,其中对象由潜在特征向量表征。每个要素本身都分为不相交的组(子集群),对应于层次结构的第二层。在实验比较中,该模型在社交和生物链接预测任务上实现了显着改善的预测性能。结果表明,具有单层层次结构的模型过度简化了实际网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号