首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >3D Reconstruction of Human Motion from Monocular Image Sequences
【24h】

3D Reconstruction of Human Motion from Monocular Image Sequences

机译:单眼图像序列对人体运动的3D重构

获取原文
获取原文并翻译 | 示例

摘要

This article tackles the problem of estimating non-rigid human 3D shape and motion from image sequences taken by uncalibrated cameras. Similar to other state-of-the-art solutions we factorize 2D observations in camera parameters, base poses and mixing coefficients. Existing methods require sufficient camera motion during the sequence to achieve a correct 3D reconstruction. To obtain convincing 3D reconstructions from arbitrary camera motion, our method is based on a-priorly trained base poses. We show that strong periodic assumptions on the coefficients can be used to define an efficient and accurate algorithm for estimating periodic motion such as walking patterns. For the extension to non-periodic motion we propose a novel regularization term based on temporal bone length constancy. In contrast to other works, the proposed method does not use a predefined skeleton or anthropometric constraints and can handle arbitrary camera motion. We achieve convincing 3D reconstructions, even under the influence of noise and occlusions. Multiple experiments based on a 3D error metric demonstrate the stability of the proposed method. Compared to other state-of-the-art methods our algorithm shows a significant improvement.
机译:本文解决了根据未经校准的相机拍摄的图像序列估算非刚性人类3D形状和运动的问题。类似于其他最新解决方案,我们将2D观测值分解为摄像机参数,基本姿态和混合系数。现有方法需要在序列中进行足够的摄像机运动才能实现正确的3D重建。为了从任意摄像机运动获得令人信服的3D重建,我们的方法基于事先训练好的基本姿势。我们表明,对系数的强周期性假设可用于定义一种高效且准确的算法,用于估算诸如步行模式之类的周期性运动。为了扩展到非周期性运动,我们提出了一个基于颞骨长度恒定性的新颖正则化术语。与其他工作相比,该方法不使用预定义的骨架或人体测量学约束,并且可以处理任意摄像机运动。即使在噪声和遮挡的影响下,我们也能实现令人信服的3D重建。基于3D误差度量的多次实验证明了该方法的稳定性。与其他最新方法相比,我们的算法显示出显着的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号