首页> 外文OA文献 >Non-linear Statistical Models for the 3D Reconstruction of Human Pose and Motion from Monocular Image Sequences
【2h】

Non-linear Statistical Models for the 3D Reconstruction of Human Pose and Motion from Monocular Image Sequences

机译:从单眼图像序列对人体姿势和运动进行3D重构的非线性统计模型

摘要

This paper presents a model based approach to human body tracking in which the 2D silhouette of a moving human and the corresponding 3D skeletal structure are encapsulated within a non-linear point distribution model. This statistical model allows a direct mapping to be achieved between the external boundary of a human and the anatomical position. It is shown how this information, along with the position of landmark features such as the hands and head can be used to reconstruct information about the pose and structure of the human body from a monocular view of a scene.
机译:本文提出了一种基于模型的人体跟踪方法,其中将移动的人的2D轮廓和相应的3D骨骼结构封装在非线性点分布模型中。该统计模型允许在人的外部边界和解剖位置之间实现直接映射。它显示了如何将此信息与地标特征(如手和头)的位置一起用于从场景的单眼视图重建有关人体姿势和结构的信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号