首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >S-CNN: Subcategory-Aware Convolutional Networks for Object Detection
【24h】

S-CNN: Subcategory-Aware Convolutional Networks for Object Detection

机译:S-CNN:用于对象检测的子类别感知卷积网络

获取原文
获取原文并翻译 | 示例

摘要

The marriage between the deep convolutional neural network (CNN) and region proposals has made breakthroughs for object detection in recent years. While the discriminative object features are learned via a deep CNN for classification, the large intra-class variation and deformation still limit the performance of the CNN based object detection. We propose a subcategory-aware CNN (S-CNN) to solve the object intra-class variation problem. In the proposed technique, the training samples are first grouped into multiple subcategories automatically through a novel instance sharing maximum margin clustering process. A multi-component Aggregated Channel Feature (ACF) detector is then trained to produce more latent training samples, where each ACF component corresponds to one clustered subcategory. The produced latent samples together with their subcategory labels are further fed into a CNN classifier to filter out false proposals for object detection. An iterative learning algorithm is designed for the joint optimization of image subcategorization, multi-component ACF detector, and subcategory-aware CNN classifier. Experiments on INRIA Person dataset, Pascal VOC 2007 dataset and MS COCO dataset show that the proposed technique clearly outperforms the state-of-the-art methods for generic object detection.
机译:近年来,深度卷积神经网络(CNN)与区域提议之间的结合为物体检测取得了突破。尽管通过深层CNN进行分类以识别目标特征,但较大的组内变化和变形仍然限制了基于CNN的目标检测的性能。我们提出了一个子类感知的CNN(S-CNN),以解决对象类内变异问题。在提出的技术中,首先通过共享最大余量聚类的新颖实例将训练样本自动分组为多个子类别。然后训练多分量聚合信道特征(ACF)检测器以产生更多潜在的训练样本,其中每个ACF分量都对应一个聚类子类别。生成的潜在样本及其子类别标签将进一步输入到CNN分类器中,以过滤出错误的建议以进行目标检测。设计了一种迭代学习算法,用于图像子分类,多分量ACF检测器和可识别子分类的CNN分类器的联合优化。在INRIA Person数据集,Pascal VOC 2007数据集和MS COCO数据集上进行的实验表明,所提出的技术明显优于用于通用对象检测的最新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号