首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Event-Based, 6-DOF Camera Tracking from Photometric Depth Maps
【24h】

Event-Based, 6-DOF Camera Tracking from Photometric Depth Maps

机译:基于事件的6自由度摄像机从光度深度图跟踪

获取原文
获取原文并翻译 | 示例

摘要

Event cameras are bio-inspired vision sensors that output pixel-level brightness changes instead of standard intensity frames. These cameras do not suffer from motion blur and have a very high dynamic range, which enables them to provide reliable visual information during high-speed motions or in scenes characterized by high dynamic range. These features, along with a very low power consumption, make event cameras an ideal complement to standard cameras for VR/AR and video game applications. With these applications in mind, this paper tackles the problem of accurate, low-latency tracking of an event camera from an existing photometric depth map (i.e., intensity plus depth information) built via classic dense reconstruction pipelines. Our approach tracks the 6-DOF pose of the event camera upon the arrival of each event, thus virtually eliminating latency. We successfully evaluate the method in both indoor and outdoor scenes and show that—because of the technological advantages of the event camera—our pipeline works in scenes characterized by high-speed motion, which are still inaccessible to standard cameras.
机译:事件相机是受生物启发的视觉传感器,可输出像素级的亮度变化,而不是标准强度的帧。这些摄像机不会出现运动模糊,并且具有很高的动态范围,这使它们能够在高速运动或动态范围较大的场景中提供可靠的视觉信息。这些功能以及极低的功耗使事件摄像机成为VR / AR和视频游戏应用的标准摄像机的理想补充。考虑到这些应用,本文解决了通过经典的密集重建管道从现有的光度深度图(即强度加深度信息)中准确,低延迟地跟踪事件摄像机的问题。我们的方法在每个事件到来时跟踪事件摄像机的6自由度姿势,从而实际上消除了延迟。我们成功地在室内和室外场景中评估了该方法,并证明了由于事件摄像机的技术优势,我们的管道可在以高速运动为特征的场景中工作,而标准摄像机仍然无法访问这些场景。

著录项

  • 来源
  • 作者单位

    Department of Informatics, Department of Neuroinformatics, University of Zurich, University of Zurich, ETH Zürich, Zürich, Switzerland;

    Department of Informatics, Department of Neuroinformatics, University of Zurich, University of Zurich, ETH Zürich, Zürich, Switzerland;

    Department of Informatics, Department of Neuroinformatics, University of Zurich, University of Zurich, ETH Zürich, Zürich, Switzerland;

    Department of Informatics, Department of Neuroinformatics, University of Zurich, University of Zurich, ETH Zürich, Zürich, Switzerland;

    Department of Informatics, Department of Neuroinformatics, University of Zurich, University of Zurich, ETH Zürich, Zürich, Switzerland;

    Department of Informatics, Department of Neuroinformatics, University of Zurich, University of Zurich, ETH Zürich, Zürich, Switzerland;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cameras; Standards; Tracking; Voltage control; Robot vision systems;

    机译:相机;标准;跟踪;电压控制;机器人视觉系统;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号