首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Leader-Based Multi-Scale Attention Deep Architecture for Person Re-Identification
【24h】

Leader-Based Multi-Scale Attention Deep Architecture for Person Re-Identification

机译:基于领导者的多尺度注意深度架构,用于人员重新识别

获取原文
获取原文并翻译 | 示例

摘要

Person re-identification (re-id) aims to match people across non-overlapping camera views in a public space. This is a challenging problem because the people captured in surveillance videos often wear similar clothing. Consequently, the differences in their appearance are typically subtle and only detectable at particular locations and scales. In this paper, we propose a deep re-id network (MuDeep) that is composed of two novel types of layers - a multi-scale deep learning layer, and a leader-based attention learning layer. Specifically, the former learns deep discriminative feature representations at different scales, while the latter utilizes the information from multiple scales to lead and determine the optimal weightings for each scale. The importance of different spatial locations for extracting discriminative features is learned explicitly via our leader-based attention learning layer. Extensive experiments are carried out to demonstrate that the proposed MuDeep outperforms the state-of-the-art on a number of benchmarks and has a better generalization ability under a domain generalization setting.
机译:人员重新识别(re-id)旨在在公共空间中通过不重叠的摄像机视图对人员进行匹配。这是一个具有挑战性的问题,因为监视视频中捕获的人员通常穿着类似的服装。因此,它们外观上的差异通常很小,只能在特定的位置和比例下才能检测到。在本文中,我们提出了一种深层re-id网络(MuDeep),它由两种新型类型的层组成-多尺度深度学习层和基于领导者的注意力学习层。具体而言,前者学习不同尺度下的深度判别式特征表示,而后者则利用来自多个尺度的信息来领导并确定每个尺度的最佳权重。通过基于领导者的注意力学习层,可以清楚地了解到不同空间位置对于提取区分特征的重要性。进行了广泛的实验,证明了所提出的MuDeep在许多基准上均优于最新技术,并且在域泛化设置下具有更好的泛化能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号