首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >First-Person Activity Forecasting from Video with Online Inverse Reinforcement Learning
【24h】

First-Person Activity Forecasting from Video with Online Inverse Reinforcement Learning

机译:通过在线逆强化学习从视频进行第一人称活动预测

获取原文
获取原文并翻译 | 示例

摘要

We address the problem of incrementally modeling and forecasting long-term goals of a first-person camera wearer: what the user will do, where they will go, and what goal they seek. In contrast to prior work in trajectory forecasting, our algorithm, Darko, goes further to reason about semantic states (will I pick up an object?), and future goal states that are far in terms of both space and time. Darko learns and forecasts from first-person visual observations of the user's daily behaviors via an Online Inverse Reinforcement Learning (IRL) approach. Classical IRL discovers only the rewards in a batch setting, whereas Darko discovers the transitions, rewards, and goals of a user from streaming data. Among other results, we show Darko forecasts goals better than competing methods in both noisy and ideal settings, and our approach is theoretically and empirically no-regret.
机译:我们解决了增量建模和预测第一人称相机佩戴者长期目标的问题:用户将做什么,他们将去何处以及他们追求什么目标。与先前的轨迹预测工作相反,我们的算法Darko进一步推理了语义状态(我会捡起一个物体吗?),以及未来目标状态的时空意义。 Darko通过在线反强化学习(IRL)方法从对用户日常行为的第一人称视觉观察中学习和预测。经典IRL仅在批处理设置中发现奖励,而Darko从流数据中发现用户的过渡,奖励和目标。在其他结果中,我们显示Darko在嘈杂和理想环境下比竞争方法更好地预测了目标,并且我们的方法在理论和经验上都是无悔的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号