首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Flexible High-Dimensional Unsupervised Learning with Missing Data
【24h】

Flexible High-Dimensional Unsupervised Learning with Missing Data

机译:缺少数据的灵活的高维无监督学习

获取原文
获取原文并翻译 | 示例

摘要

The mixture of factor analyzers (MFA) model is a famous mixture model-based approach for unsupervised learning with high-dimensional data. It can be useful, inter alia, in situations where the data dimensionality far exceeds the number of observations. In recent years, the MFA model has been extended to non-Gaussian mixtures to account for clusters with heavier tail weight and/or asymmetry. The generalized hyperbolic factor analyzers (MGHFA) model is one such extension, which leads to a flexible modelling paradigm that accounts for both heavier tail weight and cluster asymmetry. In many practical applications, the occurrence of missing values often complicates data analyses. A generalization of the MGHFA is presented to accommodate missing values. Under a missing-at-random mechanism, we develop a computationally efficient alternating expectation conditional maximization algorithm for parameter estimation of the MGHFA model with different patterns of missing values. The imputation of missing values under an incomplete-data structure of MGHFA is also investigated. The performance of our proposed methodology is illustrated through the analysis of simulated and real data.
机译:因子分析器(MFA)的混合模型是一种著名的基于混合模型的方法,可用于对高维数据进行无监督学习。除其他外,在数据维数远远超过观察次数的情况下,它可能很有用。近年来,MFA模型已扩展到非高斯混合物,以解决具有较大尾部重量和/或不对称性的群集。广义双曲线因子分析仪(MGHFA)模型就是这样一种扩展,它导致了灵活的建模范例,该范例说明了较重的尾部重量和群集不对称性。在许多实际应用中,缺失值的出现通常会使数据分析复杂化。提出了MGHFA的概括,以适应缺失值。在随机缺失机制下,我们针对不同缺失值模式的MGHFA模型,开发了一种计算效率高的交替期望条件条件最大化算法,用于参数估计。还研究了MGHFA的不完整数据结构下的缺失值的归因。通过对模拟数据和真实数据的分析说明了我们提出的方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号