首页> 外文期刊>IEEE Transactions on Image Processing >A Hybrid SEM Algorithm for High-Dimensional Unsupervised Learning Using a Finite Generalized Dirichlet Mixture
【24h】

A Hybrid SEM Algorithm for High-Dimensional Unsupervised Learning Using a Finite Generalized Dirichlet Mixture

机译:有限广义广义Dirichlet混合物用于高维无监督学习的混合SEM算法

获取原文
获取原文并翻译 | 示例

摘要

This paper applies a robust statistical scheme to the problem of unsupervised learning of high-dimensional data. We develop, analyze, and apply a new finite mixture model based on a generalization of the Dirichlet distribution. The generalized Dirichlet distribution has a more general covariance structure than the Dirichlet distribution and offers high flexibility and ease of use for the approximation of both symmetric and asymmetric distributions. We show that the mathematical properties of this distribution allow high-dimensional modeling without requiring dimensionality reduction and, thus, without a loss of information. This makes the generalized Dirichlet distribution more practical and useful. We propose a hybrid stochastic expectation maximization algorithm (HSEM) to estimate the parameters of the generalized Dirichlet mixture. The algorithm is called stochastic because it contains a step in which the data elements are assigned randomly to components in order to avoid convergence to a saddle point. The adjective “hybrid” is justified by the introduction of a Newton–Raphson step. Moreover, the HSEM algorithm autonomously selects the number of components by the introduction of an agglomerative term. The performance of our method is tested by the classification of several pattern-recognition data sets. The generalized Dirichlet mixture is also applied to the problems of image restoration, image object recognition and texture image database summarization for efficient retrieval. For the texture image summarization problem, results are reported for the Vistex texture image database from the MIT Media Lab.
机译:本文针对高维数据的无监督学习问题,采用了一种鲁棒的统计方案。我们基于Dirichlet分布的泛化来开发,分析和应用新的有限混合模型。广义Dirichlet分布比Dirichlet分布具有更一般的协方差结构,并且为近似对称和非对称分布提供了较高的灵活性和易用性。我们证明了这种分布的数学特性允许进行高维建模,而无需降低维数,因此也不会丢失信息。这使广义Dirichlet分布更加实用和有用。我们提出了一种混合随机期望最大化算法(HSEM)来估计广义狄利克雷混合物的参数。该算法之所以称为随机算法,是因为它包含一个步骤,其中将数据元素随机分配给各个组件,以避免收敛到鞍点。通过引入牛顿-拉夫森步骤,可以形容形容词“混合”。此外,HSEM算法通过引入凝聚项来自主选择组件的数量。我们的方法的性能通过几个模式识别数据集的分类来测试。广义的狄利克雷特混合也被应用于图像复原,图像对象识别和纹理图像数据库汇总等问题,以进行有效的检索。对于纹理图像概述问题,来自MIT媒体实验室的Vistex纹理图像数据库报告了结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号