首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Predicting Head Movement in Panoramic Video: A Deep Reinforcement Learning Approach
【24h】

Predicting Head Movement in Panoramic Video: A Deep Reinforcement Learning Approach

机译:预测全景视频中的头部运动:一种深度强化学习方法

获取原文
获取原文并翻译 | 示例

摘要

Panoramic video provides immersive and interactive experience by enabling humans to control the field of view (FoV) through head movement (HM). Thus, HM plays a key role in modeling human attention on panoramic video. This paper establishes a database collecting subjects' HM in panoramic video sequences. From this database, we find that the HM data are highly consistent across subjects. Furthermore, we find that deep reinforcement learning (DRL) can be applied to predict HM positions, via maximizing the reward of imitating human HM scanpaths through the agent's actions. Based on our findings, we propose a DRL-based HM prediction (DHP) approach with offline and online versions, called offline-DHP and online-DHP. In offline-DHP, multiple DRL workflows are run to determine potential HM positions at each panoramic frame. Then, a heat map of the potential HM positions, named the HM map, is generated as the output of offline-DHP. In online-DHP, the next HM position of one subject is estimated given the currently observed HM position, which is achieved by developing a DRL algorithm upon the learned offline-DHP model. Finally, the experiments validate that our approach is effective in both offline and online prediction of HM positions for panoramic video, and that the learned offline-DHP model can improve the performance of online-DHP.
机译:全景视频使人类能够通过头部移动(HM)控制视野(FoV),从而提供身临其境的互动体验。因此,HM在模拟人类对全景视频的关注方面起着关键作用。本文建立了一个收集全景视频序列中被摄对象HM的数据库。从该数据库中,我们发现各个主题之间的HM数据高度一致。此外,我们发现深度强化学习(DRL)可通过最大化通过代理行为模拟人HM扫描路径的奖励而应用于预测HM位置。根据我们的发现,我们提出了一种基于DRL的HM预测(DHP)方法,该方法具有离线和在线版本,分别称为offline-DHP和online-DHP。在脱机DHP中,运行多个DRL工作流以确定每个全景帧的潜在HM位置。然后,将潜在的HM位置的热图(称为HM图)生成为脱机DHP的输出。在在线DHP中,给定当前观察到的HM位置,可以估算一个受试者的下一个HM位置,这是通过在学习的离线DHP模型上开发DRL算法来实现的。最后,实验验证了我们的方法在全景视频的HM位置的离线和在线预测中均有效,并且学习到的离线DHP模型可以提高在线DHP的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号