首页> 外文期刊>IEEE Transactions on Cognitive Communications and Networking >DeepVR: Deep Reinforcement Learning for Predictive Panoramic Video Streaming
【24h】

DeepVR: Deep Reinforcement Learning for Predictive Panoramic Video Streaming

机译:DeepVR:预测全景视频流的深度增强学习

获取原文
获取原文并翻译 | 示例

摘要

Online panoramic video has recently gained enormous popularity. Tile-based adaptive streaming is a promising paradigm to deliver a panoramic video for the sake of bandwidth saving. Nevertheless, it is challenging to accurately predict user's field of view (FoV) and deliver the optimal bitrate due to the dynamic user behavior and time-varying network conditions. In this paper, we propose a novel approach of deep reinforcement learning based predictive panoramic video delivering. Specifically, a carefully-devised long short-term memory (LSTM) model is used to predict the FoV in the next few seconds. Our quality adaptation policy is based on a deep reinforcement learning (DRL) agent, which is able to intelligently adapt its bitrate selection policy tailored to the dynamic environments. To validate the effectiveness we have implemented a prototype of this system. With the integrated DRL algorithm Rainbow, we have achieved a superior performance in terms of the quality of experience (QoE) score, which outperforms existing panoramic video streaming frameworks.
机译:在线全景视频最近获得了巨大的普及。基于瓷砖的自适应流动是一个有希望的范例,以便为带宽节省提供全景视频。尽管如此,准确地预测用户视野(FOV)并挑战并由于动态用户行为和时变网络条件提供最佳比特率。本文提出了一种基于深度加强预测全景视频传递的新方法。具体地,仔细设计的长短期内存(LSTM)模型用于预测未来几秒钟的FOV。我们的质量适应政策基于深度加强学习(DRL)代理,能够智能地调整其对动态环境量身定制的比特率选择策略。为了验证我们实现了该系统的原型的效果。通过集成的DRL算法彩虹,我们在体验质量(QoE)得分方面取得了卓越的性能,这胜过现有的全景视频流框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号