首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >A Systematic Evaluation and Benchmark for Person Re-Identification: Features, Metrics, and Datasets
【24h】

A Systematic Evaluation and Benchmark for Person Re-Identification: Features, Metrics, and Datasets

机译:人员重新识别的系统评估和基准:功能,指标和数据集

获取原文
获取原文并翻译 | 示例

摘要

Person re-identification (re-id) is a critical problem in video analytics applications such as security and surveillance. The public release of several datasets and code for vision algorithms has facilitated rapid progress in this area over the last few years. However, directly comparing re-id algorithms reported in the literature has become difficult since a wide variety of features, experimental protocols, and evaluation metrics are employed. In order to address this need, we present an extensive review and performance evaluation of single- and multi-shot re-id algorithms. The experimental protocol incorporates the most recent advances in both feature extraction and metric learning. To ensure a fair comparison, all of the approaches were implemented using a unified code library that includes 11 feature extraction algorithms and 22 metric learning and ranking techniques. All approaches were evaluated using a new large-scale dataset that closely mimics a real-world problem setting, in addition to 16 other publicly available datasets: VIPeR, GRID, CAVIAR, DukeMTMC4ReID, 3DPeS, PRID, V47, WARD, SAIVT-SoftBio, CUHK01, CHUK02, CUHK03, RAiD, iLIDSVID, HDA+, and Market1501. The evaluation codebase and results will be made publicly available for community use.
机译:人员重新识别(re-id)是视频分析应用程序(例如安全性和监视)中的关键问题。在过去几年中,一些视觉算法的数据集和代码的公开发布促进了该领域的快速发展。然而,由于采用了多种功能,实验协议和评估指标,直接比较文献中报道的re-id算法变得困难。为了满足这一需求,我们对单发和重发re-id算法进行了广泛的回顾和性能评估。实验协议结合了特征提取和度量学习方面的最新进展。为了确保公平的比较,所有方法都使用统一的代码库实现,该代码库包括11种特征提取算法以及22种度量学习和排名技术。除16个其他公开可用的数据集外,还使用了一个新的大规模数据集对所有方法进行了评估,这些数据集紧密模拟了实际问题,这些数据集包括VIPeR,GRID,CAVIAR,DukeMTMC4ReID,3DPeS,PRID,V47,WARD,SAIVT-SoftBio, CUHK01,CHUK02,CUHK03,RAiD,iLIDSVID,HDA +和Market1501。评估代码库和结果将公开提供给社区使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号