首页> 外文期刊>Parallel Computing >Asynchronous parallel stochastic Quasi-Newton methods
【24h】

Asynchronous parallel stochastic Quasi-Newton methods

机译:异步并行随机拟牛顿方法

获取原文
获取原文并翻译 | 示例

摘要

Although first-order stochastic algorithms, such as stochastic gradient descent, have been the main force to scale up machine learning models, such as deep neural nets, the second-order quasi-Newton methods start to draw attention due to their effectiveness in dealing with ill-conditioned optimization problems. The L-BFGS method is one of the most widely used quasi-Newton methods. We propose an asynchronous parallel algorithm for stochastic quasi-Newton (AsySQN) method. Unlike prior attempts, which parallelize only the calculation for gradient or the two-loop recursion of L-BFGS, our algorithm is the first one that truly parallelizes L-BFGS with a convergence guarantee. Adopting the variance reduction technique, a prior stochastic L-BFGS, which has not been designed for parallel computing, reaches a linear convergence rate. We prove that our asynchronous parallel scheme maintains the same linear convergence rate but achieves significant speedup. Empirical evaluations in both simulations and benchmark datasets demonstrate the speedup in comparison with the non-parallel stochastic L-BFGS, as well as the better performance than first-order methods in solving ill-conditioned problems.
机译:虽然是随机梯度下降的一阶随机算法,但是缩放机器学习模型的主力,如深神经网络,二阶拟牛顿方法由于其在处理中的有效性而开始引起注意不良的优化问题。 L-BFGS方法是最广泛使用的准牛顿方法之一。我们提出了一种用于随机准牛顿(asysqn)方法的异步并行算法。与现有尝试不同,该尝试仅对L-BFGS的梯度或双环递归的计算并行化,我们的算法是第一个与收敛保证的L-BFG相行的第一个。采用差异减少技术,一种未被设计用于并行计算的先前随机L-BFG,达到线性收敛速率。我们证明我们的异步并行方案保持相同的线性收敛速率,但实现了显着的加速。与非平行随机L-BFG相比,两种模拟和基准数据集中的经验评估展示了加速,以及比解决不良问题的一阶方法更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号