首页> 外文期刊>Parallel Computing >Analyzing and improving maximal attainable accuracy in the communication hiding pipelined BiCGStab method
【24h】

Analyzing and improving maximal attainable accuracy in the communication hiding pipelined BiCGStab method

机译:通信隐藏管线BICGSTAB方法中的最大可达到准确性分析和提高

获取原文
获取原文并翻译 | 示例

摘要

Pipelined Krylov subspace methods avoid communication latency by reducing the number of global synchronization bottlenecks and by hiding global communication behind useful computational work. In exact arithmetic pipelined Krylov subspace algorithms are equivalent to classic Krylov subspace methods and generate identical series of iterates. However, as a consequence of the reformulation of the algorithm to improve parallelism, pipelined methods may suffer from severely reduced attainable accuracy in a practical finite precision setting. This work presents a numerical stability analysis that describes and quantifies the impact of local rounding error propagation on the maximal attainable accuracy of the multi-term recurrences in the preconditioned pipelined BiCGStab method. Theoretical expressions for the gaps between the true and computed residual as well as other auxiliary variables used in the algorithm are derived, and the elementary dependencies between the gaps on the various recursively computed vector variables are analyzed. The norms of the corresponding propagation matrices and vectors provide insights in the possible amplification of local rounding errors throughout the algorithm. Stability of the pipelined BiCGStab method is compared numerically to that of pipelined CG on a symmetric benchmark problem. Furthermore, numerical evidence supporting the effectiveness of employing a residual replacement type strategy to improve the maximal attainable accuracy for the pipelined BiCGStab method is provided. (C) 2019 Elsevier B.V. All rights reserved.
机译:流水线Krylov子空间方法通过减少全局同步瓶颈的数量来避免通信延迟,并通过隐藏有用的计算工作背后的全局通信。在确切的算术流水线上,krylov子空间算法等同于经典Krylov子空间方法,并生成相同的迭代系列。然而,由于算法改进了改善平行度的重构,流水线方法可能在实际的有限精度设置中遭受严重降低的可达可达到的准确性。该工作具有数值稳定性分析,描述并定量了局部舍入误差传播对预处理流水线BICGSTAB方法的多术后复发的最大可达到准确性的影响。导出了真实和计算的残差之间的间隙的理论表达以及算法中使用的其他辅助变量,并且分析了各种递归计算变量上的间隙之间的基本依赖性。相应的传播矩阵和矢量的规范提供了在整个算法中可能放大局部舍入误差的见解。流水线BICGSTAB方法的稳定性与对称基准问题的流水线CG的稳定性进行比较。此外,提供了支持采用残留替代型策略的有效性以改善流水线BICGSTAB方法的最大可达可达到的准确度的数值证据。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号