首页> 外文期刊>Parallel Computing >Analyzing and improving maximal attainable accuracy in the communication hiding pipelined BiCGStab method
【24h】

Analyzing and improving maximal attainable accuracy in the communication hiding pipelined BiCGStab method

机译:分析和提高通信隐藏流水线BiCGStab方法的最大可获得精度

获取原文
获取原文并翻译 | 示例

摘要

Pipelined Krylov subspace methods avoid communication latency by reducing the number of global synchronization bottlenecks and by hiding global communication behind useful computational work. In exact arithmetic pipelined Krylov subspace algorithms are equivalent to classic Krylov subspace methods and generate identical series of iterates. However, as a consequence of the reformulation of the algorithm to improve parallelism, pipelined methods may suffer from severely reduced attainable accuracy in a practical finite precision setting. This work presents a numerical stability analysis that describes and quantifies the impact of local rounding error propagation on the maximal attainable accuracy of the multi-term recurrences in the preconditioned pipelined BiCGStab method. Theoretical expressions for the gaps between the true and computed residual as well as other auxiliary variables used in the algorithm are derived, and the elementary dependencies between the gaps on the various recursively computed vector variables are analyzed. The norms of the corresponding propagation matrices and vectors provide insights in the possible amplification of local rounding errors throughout the algorithm. Stability of the pipelined BiCGStab method is compared numerically to that of pipelined CG on a symmetric benchmark problem. Furthermore, numerical evidence supporting the effectiveness of employing a residual replacement type strategy to improve the maximal attainable accuracy for the pipelined BiCGStab method is provided. (C) 2019 Elsevier B.V. All rights reserved.
机译:流水线Krylov子空间方法通过减少全局同步瓶颈的数量并将全局通信隐藏在有用的计算工作之后,避免了通信延迟。在精确算术中,流水线Krylov子空间算法与经典Krylov子空间方法等效,并且生成相同的迭代序列。但是,由于重新构造了算法以改善并行性,因此在实际的有限精度设置中,流水线方法可能会严重降低可达到的精度。这项工作提出了一个数值稳定性分析,该分析描述并量化了预处理的流水线BiCGStab方法中局部舍入误差传播对多次重复的最大可获得精度的影响。推导了真实残差和计算残差之间的间隙以及算法中使用的其他辅助变量的理论表达式,并分析了各个递归计算的矢量变量之间的间隙之间的基本依存关系。相应的传播矩阵和向量的范数为整个算法中局部舍入误差的可能放大提供了见识。在对称基准问题上,将流水线BiCGStab方法的稳定性与流水线CG的稳定性进行了数值比较。此外,提供了数字证据,证明了采用残差替换类型策略来提高流水线BiCGStab方法的最大可达到精度的有效性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号