首页> 外文期刊>Parallel Computing >A parallel min-cut algorithm using iteratively reweighted least squares targeting at problems with floating-point edge weights
【24h】

A parallel min-cut algorithm using iteratively reweighted least squares targeting at problems with floating-point edge weights

机译:一种针对迭代浮点边缘权重的迭代最小割算法,采用迭代最小加权平方

获取原文
获取原文并翻译 | 示例

摘要

We present a parallel algorithm for the undirected s-t min-cut problem with floating-point valued edge weights. Our overarching algorithm uses an iteratively reweighted least squares framework. Specifically, this algorithm generates a sequence of Laplacian linear systems, which are solved in parallel. The iterative nature of our algorithm enables us to trade off solution quality for execution time, which is distinguished from those purely combinatorial algorithms that only produce solutions at optimum. We also propose a novel two-level rounding procedure that helps to enhance the quality of the approximate min cut solution output by our algorithm. Our overall implementation, including the rounding procedure, demonstrates significant speed improvement over a state-of-the-art serial solver, where it could be up to 200 times faster on commodity platforms. (C) 2016 Elsevier B.V. All rights reserved.
机译:我们针对具有浮点值边缘权重的无向s-t最小割问题提出了一种并行算法。我们的总体算法使用迭代加权最小二乘法框架。具体来说,该算法生成一系列拉普拉斯线性系统,将其并行求解。我们算法的迭代性质使我们能够在执行时间上权衡解决方案质量,这与仅产生最佳解决方案的纯组合算法不同。我们还提出了一种新颖的两级舍入程序,该程序有助于通过我们的算法提高近似最小割解输出的质量。我们的整体实现(包括取整过程)证明,与最先进的串行求解器相比,速度有了显着提高,在商用平台上,它可能快200倍。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号