首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >DL2: A Deep Learning-Driven Scheduler for Deep Learning Clusters
【24h】

DL2: A Deep Learning-Driven Scheduler for Deep Learning Clusters

机译:DL2:深度学习群集的深度学习驱动的调度程序

获取原文
获取原文并翻译 | 示例

摘要

Efficient resource scheduling is essential for maximal utilization of expensive deep learning (DL) clusters. Existing cluster schedulers either are agnostic to machine learning (ML) workload characteristics, or use scheduling heuristics based on operators' understanding of particular ML framework and workload, which are less efficient or not general enough. In this article, we show that DL techniques can be adopted to design a generic and efficient scheduler. Specifically, we propose DL2, a DL-driven scheduler for DL clusters, targeting global training job expedition by dynamically resizing resources allocated to jobs. DL2 advocates a joint supervised learning and reinforcement learning approach: a neural network is warmed up via offline supervised learning based on job traces produced by the existing cluster scheduler; then the neural network is plugged into the live DL cluster, fine-tuned by reinforcement learning carried out throughout the training progress of the DL jobs, and used for deciding job resource allocation in an online fashion. We implement DL2 on Kubernetes and enable dynamic resource scaling in DL jobs on MXNet. Extensive evaluation shows that DL2 outperforms fairness scheduler (i.e., DRF) by 44.1 percent and expert heuristic scheduler (i.e., Optimus) by 17.5 percent in terms of average job completion time.
机译:高效的资源调度对于昂贵的深度学习(DL)集群的最大利用是必不可少的。现有的群集调度程序无论是无关的机器学习(ml)工作负载特性,或者使用基于运算符对特定ML框架和工作负载的调度启发式机器,这些启发式框架和工作负载效率较小或不够一般。在本文中,我们表明可以采用DL技术来设计通用和高效的调度程序。具体而言,我们提出DL2,DL驱动的调度器用于DL集群,通过动态调整分配给作业的资源来定位全球培训工作探险。 DL2倡导联合监督的学习和加强学习方法:通过基于现有群集调度程序产生的作业迹线的离线监督学习来预热神经网络;然后,神经网络被插入Live DL集群,通过在整个DL作业的培训进度中进行的强化学习进行微调,并用于以在线方式决定工作资源分配。我们在Kubernetes上实施DL2,并在MXNet上的DL作业中启用动态资源缩放。广泛的评估表明,DL2优于公平调度器(即,DRF),44.1%,专家的启发式调度器(即,Optimus),在平均工作完成时间方面为17.5%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号