首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >ADRL: A Hybrid Anomaly-Aware Deep Reinforcement Learning-Based Resource Scaling in Clouds
【24h】

ADRL: A Hybrid Anomaly-Aware Deep Reinforcement Learning-Based Resource Scaling in Clouds

机译:ADRL:云中的混合异常感知深度加强学习资源缩放

获取原文
获取原文并翻译 | 示例

摘要

The virtualization concept and elasticity feature of cloud computing enable users to request resources on-demand and in the pay-as-you-go model. However, the high flexibility of the model makes the on-time resource scaling problem more complex. A variety of techniques such as threshold-based rules, time series analysis, or control theory are utilized to increase the efficiency of dynamic scaling of resources. However, the inherent dynamicity of cloud-hosted applications requires autonomic and adaptable systems that learn from the environment in real-time. Reinforcement Learning (RL) is a paradigm that requires some agents to monitor the surroundings and regularly perform an action based on the observed states. RL has a weakness to handle high dimensional state space problems. Deep-RL models are a recent breakthrough for modeling and learning in complex state space problems. In this article, we propose a Hybrid Anomaly-aware Deep Reinforcement Learning-based Resource Scaling (ADRL) for dynamic scaling of resources in the cloud. ADRL takes advantage of anomaly detection techniques to increase the stability of decision-makers by triggering actions in response to the identified anomalous states in the system. Two levels of global and local decision-makers are introduced to handle the required scaling actions. An extensive set of experiments for different types of anomaly problems shows that ADRL can significantly improve the quality of service with less number of actions and increased stability of the system.
机译:云计算的虚拟化概念和弹性特征使用户能够在需求点击和支付代理模型中请求资源。但是,该模型的高度灵活性使得按时资源缩放问题更复杂。利用基于阈值的规则,时间序列分析或控制理论的各种技术来提高资源动态缩放的效率。但是,云托管应用程序的固有动态性需要实时从环境中学习的自主和适应性系统。强化学习(RL)是一种范式,需要一些代理来监视周围环境并定期基于观察状态执行动作。 RL具有处理高维状态空间问题的弱点。深度RL模型是复杂状态空间问题中建模和学习的最新突破。在本文中,我们提出了一种混合的异常感知深度加强基于深度加强学习资源缩放(ADRL),用于云中的资源的动态缩放。 ADRL利用异常的检测技术来通过响应系统中所识别的异常状态来触发行动来提高决策者的稳定性。引入了两级全球和地方决策者来处理所需的缩放行动。对于不同类型的异常问题的广泛实验表明,ADRL可以显着提高服务质量,较少的行动和系统的稳定性增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号