首页> 外文期刊>Mobile networks & applications >RLPAS: Reinforcement Learning-based Proactive Auto-Scaler for Resource Provisioning in Cloud Environment
【24h】

RLPAS: Reinforcement Learning-based Proactive Auto-Scaler for Resource Provisioning in Cloud Environment

机译:RLPAS:基于增强学习的主动式自动扩展器,用于云环境中的资源供应

获取原文
获取原文并翻译 | 示例

摘要

Public cloud system offers Infrastructure-as-a-Service (IaaS) to deliver the computational resources on demand. Resource requirements of a cloud environment are always fluctuating because of the dynamic nature of the arriving workload, and traditional reactive scaling techniques are employed to deal with this problem. Automated resource provisioning is an effective methodology for handling workload fluctuations by provisioning the resources on demand. Simple reactive approaches affect the performance of elastic system by over-provisioning the resources that substantially increase the costs whereas under-provisioning leads to starvation. An intelligent resource provisioning mechanism overcomes the stated issues by allocating necessary resources by learning the environment dynamically. In this article, RLPAS (Reinforcement Learning based Proactive Auto-Scaler) algorithm is proposed, and it is based on the existing Reinforcement Learning (RL)-SARSA algorithm that learns the environment in parallel and allocates the resources. The performance of RLPAS algorithm is validated using real workloads, and it outperforms existing auto-scaling approaches in terms of CPU utilization, response time and throughput. Further, it also converges at an optimal time step and proves to be feasible for the extensive range of real cloud applications.
机译:公共云系统提供基础架构即服务(IaaS),以按需交付计算资源。由于到达的工作负载的动态性质,云环境的资源需求始终在波动,因此采用传统的反应式扩展技术来解决此问题。自动化资源供应是一种通过按需供应资源来处理工作负载波动的有效方法。简单的反应性方法会通过过度配置资源而影响弹性系统的性能,从而大大增加成本,而配置不足则会导致饥饿。智能资源供应机制通过动态学习环境来分配必要的资源,从而克服了上述问题。本文提出了RLPAS(基于增强学习的主动自动缩放器)算法,该算法基于现有的并行学习环境并分配资源的RLS-SARSA算法。 RLPAS算法的性能已通过实际工作负载进行了验证,并且在CPU利用率,响应时间和吞吐量方面均优于现有的自动扩展方法。此外,它还在最佳时间步收敛,并被证明对于广泛的实际云应用程序是可行的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号