机译:在边缘多任务传输学习:使用数据驱动任务分配模型和实践
National Engineering Research Center for Big Data Technology and System Key Laboratory of Services Computing Technology and System Ministry of Education School of Computer Science and Technology Huazhong University of Science and Technology Wuhan Hubei China;
Edge Cloud Innovation Lab Technical Innovation Department Cloud BU Huawei Technologies Co. Ltd. Shenzhen China;
Department of Computing Hong Kong Polytechnic University Kowloon Hong Kong;
Department of Computing Hong Kong Polytechnic University Kowloon Hong Kong;
National Engineering Research Center for Big Data Technology and System Key Laboratory of Services Computing Technology and System Ministry of Education School of Computer Science and Technology Huazhong University of Science and Technology Wuhan Hubei China;
Task analysis; Resource management; Image edge detection; Data models; Machine learning; Performance evaluation; Computational modeling;
机译:勘误到“边缘多任务传输学习:模型与数据驱动任务分配”
机译:新的转移学习框架及其在与模型无关的多任务学习中的应用
机译:QSAR建模中的转移和多任务学习:进展和挑战
机译:使用潜在多任务学习传输多设备定位模型
机译:多任务泛化使用分布式深度加强学习的实践
机译:QSAR建模中的转移和多任务学习:进展和挑战
机译:使用潜在多任务学习转移多设备本地化模型