首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >Cost-Effective Cloud Server Provisioning for Predictable Performance of Big Data Analytics
【24h】

Cost-Effective Cloud Server Provisioning for Predictable Performance of Big Data Analytics

机译:具有成本效益的云服务器提供可预测性能的大数据分析

获取原文
获取原文并翻译 | 示例

摘要

Cloud datacenters are underutilized due to server over-provisioning. To increase datacenter utilization, cloud providers offer users an option to run workloads such as big data analytics on the underutilized resources, in the form of cheap yet revocable transient servers (e.g., EC2 spot instances, GCE preemptible instances). Though at highly reduced prices, deploying big data analytics on the unstable cloud transient servers can severely degrade the job performance due to instance revocations. To tackle this issue, this paper proposes iSpot, a cost-effective transient server provisioning framework for achieving predictable performance in the cloud, by focusing on Spark as a representative Directed Acyclic Graph (DAG)-style big data analytics workload. It first identifies the stable cloud transient servers during the job execution by devising an accurate Long Short-Term Memory (LSTM)-based price prediction method. Leveraging automatic job profiling and the acquired DAG information of stages, we further build an analytical performance model and present a lightweight critical data checkpointing mechanism for Spark, to enable our design of iSpot provisioning strategy for guaranteeing the job performance on stable transient servers. Extensive prototype experiments on both EC2 spot instances and GCE preemptible instances demonstrate that, iSpot is able to guarantee the performance of big data analytics running on cloud transient servers while reducing the job budget by up to 83.8 percent in comparison to the state-of-the-art server provisioning strategies, yet with acceptable runtime overhead.
机译:由于服务器过度配置,云数据中心未充分利用。为了提高数据中心利用率,云提供商提供用户可以选择运行未充分的资源的大数据分析等工作负载(例如,EC2 Spot Instances,GCE抢占实例)。虽然价格高度降低,但在不稳定的云瞬态服务器上部署大数据分析可能会严重降低由于实例revocation而导致的作业性能。为了解决这个问题,本文提出了ISPOT,一个经济效益的瞬态服务器供应框架,用于在云中实现可预测的性能,通过关注火花作为代表指向的非循环图(DAG)-Style大数据分析工作负载。它首先通过设计精确的长短期存储器(LSTM)的价格预测方法,在作业期间识别稳定的云瞬态服务器。利用自动工作分析和阶段的获得性DAG信息,我们进一步构建了一个分析性能模型,并为Spark提供了轻量级的关键数据检查机制,使我们的ISPot供应策略设计能够在稳定的瞬态服务器上保证工作性能。广泛的原型实验在EC2现货实例和GCE先发制人的实例上表明,ISPOT能够保证在云瞬态服务器上运行的大数据分析的性能,同时与最大的状态降低了高达83.8%的工作预算-Art服务器配置策略,但具有可接受的运行时开销。

著录项

  • 来源
  • 作者单位

    East China Normal Univ Dept Comp Sci & Technol Shanghai Key Lab Multidimens Informat Proc 3663 N Zhongshan Rd Shanghai 200062 Peoples R China;

    East China Normal Univ Dept Comp Sci & Technol Shanghai Key Lab Multidimens Informat Proc 3663 N Zhongshan Rd Shanghai 200062 Peoples R China;

    East China Normal Univ Dept Comp Sci & Technol Shanghai Key Lab Multidimens Informat Proc 3663 N Zhongshan Rd Shanghai 200062 Peoples R China;

    East China Normal Univ Dept Comp Sci & Technol Shanghai Key Lab Multidimens Informat Proc 3663 N Zhongshan Rd Shanghai 200062 Peoples R China;

    Huazhong Univ Sci & Technol Sch Comp Sci & Technol Cluster & Grid Comp Lab Serv Comp Technol & Syst Lab 1037 Luoyu Rd Wuhan 430074 Hubei Peoples R China;

    Sun Yat Sen Univ Sch Data & Comp Sci Guangdong Key Lab Big Data Anal & Proc 132 E Waihuan Rd Guangzhou 510006 Guangdong Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Predictable performance; big data analytics; cloud computing; transient server provisioning; data checkpointing;

    机译:可预测性能;大数据分析;云计算;瞬态服务器供应;数据检查点;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号