首页> 外文期刊>IEEE Transactions on Computers >Heterogeneity and Interference-Aware Virtual Machine Provisioning for Predictable Performance in the Cloud
【24h】

Heterogeneity and Interference-Aware Virtual Machine Provisioning for Predictable Performance in the Cloud

机译:异构性和可感知干扰的虚拟机配置,可在云中实现可预测的性能

获取原文
获取原文并翻译 | 示例

摘要

Infrastructure-as-a-service (IaaS) cloud providers offer tenants elastic computing resources in the form of virtual machine (VM) instances to run their jobs. Recently, providing predictable performance (i.e., performance guarantee) for tenant applications is becoming increasingly compelling in IaaS clouds. However, the hardware heterogeneity and performance interference across the same type of cloud VM instances can bring substantial performance variation to tenant applications, which inevitably stops the tenants from moving their performance-sensitive applications to the IaaS cloud. To tackle this issue, this paper proposes Heifer, a He terogeneity and interference-aware VM provisioning framework for tenant applications, by focusing on MapReduce as a representative cloud application. It predicts the performance of MapReduce applications by designing a lightweight performance model using the online-measured resource utilization and capturing VM interference. Based on such a performance model, Heifer provisions the VM instances of the good-performing hardware type (i.e., the hardware that achieves the best application performance) to achieve predictable performance for tenant applications, by explicitly exploring the hardware heterogeneity and capturing VM interference. With extensive prototype experiments in our local private cloud and a real-world public cloud (i.e., Microsoft Azure) as well as complementary large-scale simulations, we demonstrate that Heifer can guarantee the job performance while saving the job budget for tenants. Moreover, our evaluation results show that Heifer can improve the job throughput of cloud datacenters, such that the revenue of cloud providers can be increased, thereby achieving a win-win situation between providers and tenants.
机译:基础架构即服务(IaaS)云提供商以虚拟机(VM)实例的形式向租户提供弹性计算资源,以运行其工作。最近,在IaaS云中,为租户应用程序提供可预测的性能(即性能保证)变得越来越引人注目。但是,跨相同类型的云VM实例的硬件异构性和性能干扰会给租户应用程序带来巨大的性能差异,这不可避免地阻止了租户将其对性能敏感的应用程序迁移到IaaS云。为了解决这个问题,本文通过重点介绍MapReduce作为代表性的云应用程序,提出了Heifer,这是一种针对租户应用程序的He异构性和干扰感知VM设置框架。它通过使用在线测量的资源利用率并捕获VM干扰来设计轻量级性能模型,从而预测MapReduce应用程序的性能。基于这样的性能模型,Heifer通过显式探索硬件异构性并捕获VM干扰来配置性能良好的硬件类型(即,实现最佳应用程序性能的硬件)的VM实例,以实现租户应用程序可预测的性能。通过在本地私有云和真实世界的公共云(即Microsoft Azure)中进行的大量原型实验以及补充的大规模模拟,我们证明了小母牛可以在保证工作性能的同时节省住户的工作预算。此外,我们的评估结果表明,小母牛可以提高云数据中心的工作吞吐量,从而可以增加云提供商的收入,从而实现提供商与租户之间的双赢局面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号