首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >Synthesizing variable instruction issue interpreters for implementing functional parallelism on SIMD computers
【24h】

Synthesizing variable instruction issue interpreters for implementing functional parallelism on SIMD computers

机译:合成可变指令问题解释程序以在SIMD计算机上实现功能并行

获取原文
获取原文并翻译 | 示例

摘要

Functional parallelism can be supported on SIMD machines by interpretation. Under such a scheme, the programs and data of each task are loaded on the processing elements (PEs) and the Control Unit of the machine executes a central control algorithm that causes the concurrent interpretation of the tasks on the PEs. The central control algorithm is, in many respects, analogous to the control store program on microprogrammed machines. Accordingly, the organization of the control algorithm greatly influences the performance of the synthesized MIMD environment. Most central control algorithms are constructed to interpret the execution phase of all instructions during every cycle (iteration). However, it is possible to delay the interpretation of infrequent and costly instructions to improve the overall performance. Interpreters that attempt improved performance by delaying the issue of infrequent instructions are referred to as variable issue control algorithms. This paper examines the construction of optimized variable issue control algorithms. In particular, a mathematical model for the interpretation process is built and two objective functions (instruction throughput and PE utilization) are defined. The problem of deriving variable issue control algorithms for these objective functions has been shown elsewhere to be NP-complete. Therefore, this paper investigates three heuristic algorithms for constructing near optimal variable issue control algorithms. The performance of the algorithms is studied on four different instruction sets and the trends of the schedulers with respect to the instruction sets and the objective functions are analyzed.
机译:通过解释,可以在SIMD机器上支持功能并行性。在这样的方案下,每个任务的程序和数据被加载到处理元件(PE)上,并且机器的控制单元执行中央控制算法,该算法导致并发解释PE上的任务。中央控制算法在许多方面类似于微程序机器上的控制存储程序。因此,控制算法的组织极大地影响了合成MIMD环境的性能。大多数中央控制算法都构造为在每个周期(迭代)中解释所有指令的执行阶段。但是,可以延迟不频繁且昂贵的指令的解释,以提高整体性能。通过延迟不频繁指令的发布来尝试提高性能的解释器称为变量问题控制算法。本文研究了优化的变量问题控制算法的构造。特别是,建立了用于解释过程的数学模型,并定义了两个目标函数(指令吞吐量和PE使用率)。在其他地方已经证明,为这些目标函数导出变量问题控制算法的问题是NP完全的。因此,本文研究了三种启发式算法,用于构造接近最优的变量问题控制算法。研究了四种不同指令集的算法性能,并分析了调度程序相对于指令集和目标函数的趋势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号